人教版八年级数学培优资料(1--24讲)附模拟测试三题_第1页
人教版八年级数学培优资料(1--24讲)附模拟测试三题_第2页
人教版八年级数学培优资料(1--24讲)附模拟测试三题_第3页
人教版八年级数学培优资料(1--24讲)附模拟测试三题_第4页
人教版八年级数学培优资料(1--24讲)附模拟测试三题_第5页
已阅读5页,还剩145页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.wd.wd.wd.目录第1讲 全等三角形的性质与判定(P2-11)第2讲 角平分线的性质与判定(P12-16)第3讲 轴对称及轴对称变换(P17-24)第4讲 等腰三角形(P25-36)第5讲 等边三角形(P37-42)第6讲 实 数(P43-49)第7讲 变量与函数(P50-54)第8讲 一次函数的图象与性质(P55-63)第9讲 一次函数与方程、不等式(P64-68)第10讲 一次函数的应用(P69-80)第11讲 幂的运算P81-86)第12讲 整式的乘除(P87-93)第13讲 因式分解及其应用(P94-100)第14讲 分式的概念性质与运算(P101-108)第15讲 分式的化简

2、求值 与证明(P109-117)第16讲 分式方程及其应用(P118-125)第17讲 反比例函数的图像与性质(P126-138)第18讲 反比例函数的应用(P139-146)第19讲 勾股定理(P147-157)第20讲 平行四边形(P158-166)第21讲 菱形矩形(P167-178)第22讲 正方形(P179-189)第23讲 梯形(P190-198)第24讲 数据的分析(P199-209)模拟测试一模拟测试二模拟测试三第01讲 全等三角形的性质与判定考点方法破译1能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全一样;2全等三角形性质:全等三角形对应边相等,对应角相等;

3、全等三角形对应高、角平分线、中线相等;全等三角形对应周长相等,面积相等;3全等三角形判定方法有:SAS,ASA,AAS,SSS,对于两个直角三角形全等的判定方法,除上述方法外,还有HL法;4证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进展证明;5证明两个三角形全等,根据条件,有时能直接进展证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典考题赏析【例】如图,ABE

4、FDC,ABC90,ABCD,那么图中有全等三角形 BACDEFA5对B4对C3对D2对【解法指导】从题设题设条件出发,首先找到对比明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:ABEFDC,ABC90. DCB90. 在ABC和DCB中ABCDCBSAS AD在ABE和DCE中ABEDCEBECE在RtEFB和RtEFC中RtEFBRtEFCHL应选C.【变式题组】01天津以下判断中错误的选项是 A有两角和一边对应相等的两个三角形全等B有两边和一角对应相等的两个三角形全等C有两边和其中一边上的中线对应相等的两个三角形全

5、等D有一边对应相等的两个等边三角形全等02丽水命题:如图,点A、D、B、E在同一条直线上,且ADBE,AFDE,那么ABCDEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.AFCEDB03(上海)线段AC与BD相交于点O, 连接AB、DC,E为OB的中点,F为OC的中点,连接EF如以下图.添加条件AD,OEFOFE,求证:ABDC;ABCDOFE分别将“AD记为,“OEFOFE记为,“ABDC记为,添加、,以为结论构成命题1;添加条件、,以为结论构成命题2.命题1是_命题,命题2是_命题选择“真或“假填入空格.【例】A

6、BDC,AEDF,CFFB. 求证:AFDE.【解法指导】想证AFDE,首先要找出AF和DE所在的三角形.AF在AFB和AEF中,而DE在CDE和DEF中,因而只需证明ABFDCE或AEFDFE即可.然后再根据条件找出证明它们全等的条件.ACEFBD证明:FBCEFBEFCEEF,即BECF在ABE和DCF中,ABEDCFSSS BC在ABF和DCE中,ABFDCEAFDE【变式题组】01如图,AD、BE是锐角ABC的高,相交于点O,假设BOAC,BC7,CD2,那么AO的长为 A2B3C4D5AE第1题图ABCDEBCDO第2题图02.如图,在ABC中,ABAC,BAC90,AE是过A点的一

7、条直线,AECE于E,BDAE于D,DE4cm,CE2cm,那么BD_.03北京:如图,在ABC中, ACB90,CDAB于点D,点E在AC上,CEBC,过点E作AC的垂线,交CD的延长线于点F. 求证:ABFC.AFECBD【例】如图,ABCDEF,将ABC和DEF的顶点B和顶点E重合,把DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.当DEF旋转至如图位置,点BE、C、D在同一直线上时,AFD与DCA的数量关系是_;当DEF继续旋转至如图位置时,中的结论成立吗请说明理由_.BEOCF图FABCDEFAB(E)CDDA图图【解法指导】AFDDCAAFDDCA理由如下:由ABCDEF,A

8、BDE,BCEF, ABCDEF, BACEDF ABCFBCDEFCBF, ABFDEC在ABF和DEC中,ABFDECBAFDEC BACBAFEDFEDC, FACCDFAODFACAFDCDFDCAAFDDCA【变式题组】01绍兴如图,D、E分别为ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.假设CDE48,那么APD等于 A42B48C52D5802如图,RtABC沿直角边BC所在的直线向右平移得到DEF,以下结论中错误的选项是 AABCDEFBDEF90C ACDF DECCFEFBABPDEC第1题图ACDG第2题图03一张长方形纸片沿对角线剪开,

9、得到两种三角形纸片,再将这两张三角形纸片摆成如以以下图形式,使点B、F、C、D在同一条直线上.求证:ABED;假设PBBC,找出图中与此条件有关的一对全等三角形,并证明.BFACENMPDDACBFE【例】第21届江苏竞赛试题,如图,BD、CE分别是ABC的边A C和AB边上的高,点P在BD的延长线,BPAC,点Q在CE上,CQAB. 求证:APAQ;APAQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证APAQ,也就是证APD和AQE,或APB和QAC全等,由条件BPAC,CQAB,应该证APBQAC,已具备两组边对应相等,于是再证夹角12即可. 证APAQ,即

10、证PAQ90,PADQAC90就可以.21ABCPQEFD证明:BD、CE分别是ABC的两边上的高,BDACEA90,1BAD90,2BAD90,12. 在APB和QAC中,APBQAC,APAQAPBQAC,PCAQ, PPAD90CAQPAD90,APAQ【变式题组】ABCDFE01如图,ABAE,BE,BAED,点F是CD的中点,求证:AFCD.02湖州市竞赛试题如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为am,此时梯子的倾斜角为75,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB为bm,梯子倾斜角为45,这间房子的宽度是 ABCbmDa

11、mAECBA75C45BNM第2题图第3题图D03如图,五边形ABCDE中, ABCAED90,ABCDAEBCDE2,那么五边形ABCDE的面积为_演练稳固反响提高01海南图中的两个三角形全等,那么度数是 A72B60C58D50第3题图第1题图CAODBP第2题图ACA/BB/acca50b725802如图,ACBA/C/B/,BCB/30,那么ACA/的度数是 A20B30C35D4003牡丹江尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于长为半径画弧,两弧交于点P,作射线OP,由作法得OCPODP的根据是 ASASBA

12、SACAASDSSS04江西如图,ABAD,那么添加以下一个条件后,仍无法判定ABCADC的是 A. CBCDB.BACDACC. BCADCAD.BD90E21NABDC第5题图ABCDEABCD第4题图第6题图M05有两块不同大小的等腰直角三角板ABC和BDE,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A、B、D不在一条直线上时,下面的结论不正确的选项是 A. ABECBDB. ABECBDC. ABCEBD45D. ACBE06如图,ABC和共顶点A,ABAE,12,BE. BC交AD于M,DE交AC于N,小华说:“一定有ABCAED.小明说:“ABMAEN.那

13、么 A. 小华、小明都对B. 小华、小明都不对C. 小华对、小明不对D.小华不对、小明对07如图,ACEC, BCCD,ABED,如果BCA119,ACD98,那么ECA的度数是_.08如图,ABCADE,BC延长线交DE于F,B25,ACB105,DAC10,那么DFB的度数为_.09如图,在RtABC中,C90, DEAB于D, BCBD. AC3,那么AEDE_第10题图ABCDE第9题图EABCDABCDEFOCAEBD第7题图第8题图10如图,BAAC, CDAB. BCDE,且BCDE,假设AB2, CD6,那么AE_.11如图, ABCD, ABCD. BC12cm,同时有P、Q

14、两只蚂蚁从点C出发,沿CB方向爬行,P的速度是0.1cm/s, Q的速度是0.2cm/s. 求爬行时间t为多少时,APBQDC.DAC.QP.BDBACEF12如图, ABC中,BCA90,ACBC,AE是BC边上的中线,过C作CFAE,垂足为F,过B作BDBC交CF的延长线于D.求证:AECD;假设AC12cm, 求BD的长.AEBFDC13吉林如图,ABAC,ADBC于点D,AD等于AE,AB平分DAE交DE于点F, 请你写出图中三对全等三角形,并选取其中一对加以证明.14如图,将等腰直角三角板ABC的直角顶点C放在直线l上,从另两个顶点A、B分别作l的垂线,垂足分别为D、E.BDEClA

15、找出图中的全等三角形,并加以证明;假设DEa,求梯形DABE的面积.温馨提示:补形法AEFBDC15如图,ACBC, ADBD, ADBC,CEAB,DFAB,垂足分别是E、F.求证:CEDF.16我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等证明略;对于这两个三角形均为锐角三角形,它们也全等,可证明如下;ABC、A1B1C1均为锐角三角形,ABA1B1,BCB1C1,CC1.求证:ABCA1B1C1.请你将以下证明过程补充完整ABCDA1B1

16、C1D1归纳与表达:由可得一个正确结论,请你写出这个结论.培优升级奥赛检测01如图,在ABC中,ABAC,E、F分别是AB、AC上的点,且AEAF,BF、CE相交于点O,连接AO并延长交BC于点D,那么图中全等三角形有 A4对B5对C6对D7对F第6题图21ABCENM321ADEBCFADECOAEOBFCD第1题图B第2题图第3题图02如图,在ABC中,ABAC,OCOD,以下结论中:AB DECE,连接DE, 那么OE平分AOB,正确的选项是 ABCD03如图,A在DE上,F在AB上,且ACCE , 1=2=3, 那么DE的长等于ADCB. BCC. ABD.AEAC04下面有四个命题,

17、其中真命题是 A两个三角形有两边及一角对应相等,这两个三角形全等B两边和第三边上的高对应相等的两个三角形全等C. 有一角和一边对应相等的两个直角三角形全等D. 两边和第三边上的中线对应相等的两个三角形全等05在ABC中,高AD和BE所在直线相交于H点,且BHAC,那么ABC_.06如图,EB交AC于点M, 交FC于点D, AB交FC于点N,EF90,BC, AEAF. 给出以下结论:12;BECF; ACNABM; CDDB,其中正确的结论有_.填序号07如图,AD为在ABC的高,E为AC上一点,BE交AD于点F,且有BFAC,FDCD.求证:BEAC;AEFCDB假设把条件“BFAC和结论“

18、BEAC互换,这个命题成立吗证明你的判定.08如图,D为在ABC的边BC上一点,且CDAB,BDABAD,AE是ABD的中线.求证:AC2AE.ABEDC09如图,在凸四边形ABCD中,E为ACD内一点,满足ACAD,ABAE, BAEBCE90, BACEAD.求证:CED90. AEBDC10沈阳将两个全等的直角三角形ABC和DBE按图方式摆放,其中ACBDEB90,AD30,点E落在AB上,DE所在直线交AC所在直线于点F.求证:AFEFDE;假设将图中DBE绕点B顺时针方向旋转角,且060,其他条件不变,请在图中画出变换后的图形,并直接写出1中结论是否仍然成立;假设将图中DBE绕点B按

19、顺时针方向旋转角,且60180,其他条件不变,如图你认为1中结论还成立吗假设成立,写出证明过程;假设不成立,请写出此时AF、EF与DE之间的关系,并说明AFDFCBEDACBEACB图图图理由。11阅读理解:课外兴趣小组活动时,教师提出了如下问题:在ABC中,AB5,AC13, 求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DEAD,再连接BE,把AB、AC、2AD集中在ABE中,利用三角形的三边关系可得2AE8,那么1AD4.感悟:解题时,条件中假设出现“中点“中线等条件,可以考虑中线加倍,构造全等三角形,把分散的条件和所求证的结论集中到同一

20、个三角形中.ABEFCD问题解决:受到的启发,请你证明下面命题:如图,在ABC中,D是BC边上的中点,DEDF,DE交AB于点E,DF交AC于点F,连接EF.求证:BECFEF;ABCDEAEBFCD问题拓展:如图,在四边形ABDC中,BC180,DBDC,BDC=120,以D为顶点作一个60角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.12北京如图,ABC.请你在BC边上分别取两点D、EBC的中点除外,连接AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;CBA请你根据使成立的相应条件,证明:AB

21、ACADAE.ADEGCHB13如图,ABAD,ACAE,BADCAE180. AHAH于H,HA的延长线交DE于G. 求证:GDGE.14,四边形ABCD中,ABAD,BCCD,BABC,ABC120,MBN60, MBN绕B点旋转,它的两边分别交AD、DC或它们的延长线于E、F.当MBN绕B点旋转到AECF时,如图1,易证:AECFEF;不需证明当MBN绕B点旋转到AECF时,如图2和图3中这两种情况下,上述结论是否成立? 假设成立,请给予证明;假设不成立,线段AE、CF、EF又有若何的数量关系请写出你的猜测,不需证明.DABCFNEMD图1ABCFNEMDABCFNEM图2图3第02讲

22、角平分线的性质与判定考点方法破译1角平分线的性质定理:角平分线上的点到角两边的距离相等.2角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上.3有角平分线时常常通过以下几种情况构造全等三角形.经典考题赏析【例】如图,OD平分AOB,在OA、OB边上截取OAOB,PMBD,PNAD.求证:PMPN【解法指导】由于PMBD,PNAD.欲证PMPN只需34,证34,只需3和4所在的OBD与OAD全等即可.证明:OD平分AOB12 在OBD与OAD中,OBDOAD34 PMBD,PNAD 所以PMPN【变式题组】01如图,CP、BP分别平分ABC的外角BCM、CBN.求证:点P在BAC

23、的平分线上.02如图,BD平分ABC,ABBC,点P是BD延长线上的一点,PMAD,PNCD.求证:PMPN【例】天津竞赛题如图,四边形ABCD中,AC平分BAD,CEAB于点E,且AE(ABAD),如果D120,求B的度数【解法指导】由12,CEAB,联想到可作CFAD于F,得CECF,AFAE,又由AE(ABAD)得DFEB,于是可证CFDCEB,那么BCDF60.或者在AE上截取AMAD从而构造全等三角形. 解:过点C作CFAD于点F.AC平分BAD,CEAB,点C是AC上一点,CECF 在RtCFA和RtCEA中,RtACFRtACEAFAE 又AE(AEBEAFDF),2AEAEAF

24、BEDF,BEDFCFAD,CEAB,FCEB90 在CEB和CFD中,CEBCFDBCDF 又ADC120,CDF60,即B60.【变式题组】01如图,在ABC中,CD平分ACB,AC5,BC3.求02(河北竞赛)在四边形ABCD中,ABa,ADb.且BCDC,对角线AC平分BAD,问a与b的大小符合什么条件时,有BD180,请画图并证明你的结论.【例】如图,在ABC中,BAC90,ABAC,BE平分ABC,CEBE.求证:CEBD【解法指导】由于BE平分ABC,因而可以考虑过点D作BC的垂线或延长CE从而构造全等三角形.证明:延长CE交BA的延长线于F,12,BEBE,BEFBECBEFB

25、EC(ASA) CEEF,CECF1F3F90,13在ABD和ACF中,ABDACFBDCFCEBD【变式题组】01如图,ACBD,EA、EB分别平分CAB、DBA,CD过点E,求证:ABACBD.02如图,在ABC中,B60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F.请你判断FE和FD之间的数量关系,并说明理由;求证:AECDAC.演练稳固反响提高01如图,在RtABC中,C90,BD平分ABC交AC于D,假设CDn,ABm,那么ABD的面积是 AmnBmnC mnD2 mn02如图,ABAC,BECE,下面四个结论:= 1 * GB3BPCP;= 2 * GB3ADBC

26、;= 3 * GB3AE平分BAC;= 4 * GB3PBCPCB.其中正确的结论个数有 个A1B2C3D403如图,在ABC中,P、Q分别是BC、AC上的点,作PRAB,PSAC,垂足分别是R、S.假设AQPQ,PRPS,以下结论:= 1 * GB3ASAR;= 2 * GB3PQAR;= 3 * GB3BRPCSP.其中正确的选项是 A= 1 * GB3= 3 * GB3B= 2 * GB3= 3 * GB3C= 1 * GB3= 2 * GB3D= 1 * GB3= 2 * GB3= 3 * GB304如图,ABC中,ABAC,AD平分BAC,DEAB,DFAC,垂足分别是E、F,那么以

27、下四个结论中:= 1 * GB3AD上任意一点到B、C的距离相等;= 2 * GB3AD上任意一点到AB、AC的距离相等;= 3 * GB3ADBC且BDCD;= 4 * GB3BDECDF.其中正确的选项是 A= 2 * GB3= 3 * GB3B= 2 * GB3= 4 * GB3C= 2 * GB3= 3 * GB3= 4 * GB3D= 1 * GB3= 2 * GB3= 3 * GB3= 4 * GB305如图,在RtABC中,ACB90,CAB30,ACB的平分线与ABC的外角平分线交于E点,那么AEB的度数为 A50B45C40D3506如图,P是ABC内一点,PDAB于D,PE

28、BC于E,PFAC于F,且PDPEPF,给出以下结论:= 1 * GB3ADAF;= 2 * GB3ABECACBE;= 3 * GB3BCCFABAF;= 4 * GB3点P是ABC三条角平分线的交点.其中正确的序号是 A= 1 * GB3= 2 * GB3= 3 * GB3= 4 * GB3B= 1 * GB3= 2 * GB3= 3 * GB3C= 1 * GB3= 2 * GB3= 4 * GB3D= 2 * GB3= 3 * GB3= 4 * GB307如图,点P是ABC两个外角平分线的交点,那么以下说法中不正确的选项是 A点P到ABC三边的距离相等B点P在ABC的平分线上CP与B的

29、关系是:PB90DP与B的关系是:BP08如图,BD平分ABC,CD平分ACE,BD与CD相交于D.给出以下结论:= 1 * GB3点D到AB、AC的距离相等;= 2 * GB3BAC2BDC;= 3 * GB3DADC;= 4 * GB3DB平分ADC.其中正确的个数是 A1个B2个C3个D4个09如图,ABC中,C90AD是ABC的角平分线,DEAB于E,以下结论中:= 1 * GB3AD平分CDE;= 2 * GB3BACBDE;= 3 * GB3DE平分ADB;= 4 * GB3ABACBE.其中正确的个数有 A3个B2个C1个D4个10如图,BQ是ABC的内角平分线,CQ是ACB的外

30、角平分线,由Q出发,作点Q到BC、AC和AB的垂线QM、QN和QK,垂足分别为M、N、K,那么QM、QN、QK的关系是_11如图,AD是BAC的平分线,DEAB于E,DFAC于F,且DBDC.求证:BECF12如图,在ABC中,AD是BAC的平分线,DEAB于点E,DFAC于点F.求证:ADEF.培优升级奥赛检测01如图,直线l1、l2、l3表示三条相互穿插的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么可选择的地址有 A一处B二处C三处D四处 02RtABC中,C90,AD平分BAC交BC于D,假设BC32,且BD:CD9:7,那么D到AB边的距离为 A18B16C14D12

31、03如图,ABC中,C90,AD是ABC的平分线,有一个动点P从A向B运动.:DC3cm,DB4cm,AD8cm.DP的长为x(cm),那么x的范围是_04如图,ABCD,PEAB,PFBD,PGCD,垂足分别为E、F、G,且PFPGPE,那么BPD_05如图,ABCD,O为CAB、ACD的平分线的交点,OEAC,且OE2,那么两平行线AB、CD间的距离等于_06如图,AD平分BAC,EFAD,垂足为P,EF的延长线于BC的延长线相交于点G.求证:G(ACBB)07如图,在ABC中,ABAC,AD是BAC的平分线,P为AC上任意一点.求证:ABACDBDC08如图,在ABC中,BAC60,AC

32、B40,P、Q分别在BC、AC上,并且AP、BQ分别为BAC、ABC的角平分线上.求证:BQAQABBP第3讲 轴对称及轴对称变换考点方法破译1轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:关于某直线对称的两个图形是全等形;对称轴是任何一对对应点所连线段的垂直平分线;两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2线段垂直平分线线段垂直平分线也叫线段中垂线,它反映了与线段的两种关系:位置关系垂直;数量关系平分.性质定理:线段垂直平分线上的点与这条线段两

33、个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3当条件中出现了等腰三角形、角平分线、高或垂线、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐图形,集中条件.经典考题赏析【例】兰州如以下图,将一张正方形纸片对折两次,然后在上面打3个洞,那么纸片展开后是 【解法指导】对折问题即是轴对称问题,折痕就是对称轴.应选D.【变式题组】01将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是 02荆州如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径

34、在BC上的半圆,再展开,那么展开后的图形为 【例2】襄樊如图,在边长为1的正方形网格中,将ABC向右平移两个单位长度得到ABC,那么与点B关于x轴对称的点的坐标是 A0,1 B1,1 C2,1 D1,1【解法指导】在ABC中,点B的坐标为1,1,将ABC向右平移两个单位长度得到ABC,由点的坐标平移规律可得B12,1,即B1,1.由关于x轴对称的点的坐标的规律可得点B关于x轴对称的点的坐标是1,1,故应选D.【变式题组】01假设点P2,3与点Qa,b关于x轴对称,那么a、b的值分别是 A2,3 B2,3 C2,3 D2,302在直角坐标系中,点P3,2,点Q是点P关于x轴的对称点,将点Q向右平

35、移4个单位得到点R,那么点R的坐标是_.03荆州点Pa1,2a1关于x轴的对称点在第一象限,那么a的取值范围为_.【例3】如图,将一个直角三角形纸片ABCACB90,沿线段CD折叠,使点B落在B1处,假设ACB170,那么ACD A30B20C15D10【解法指导】由折叠知BCDB1CD.设ACDx,那么BCDB1CDACB1ACD70 x.又ACDBCDACB,即x70 x90,故x10.应选D.【变式题组】01东营如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D、C的位置.假设EFB65,那么AED等于 A70B65C50D2502如图,ABC中,A30,以BE为边,将此三角形对折

36、,其次,又以BA为边,再一次对折,C点落在BE上,此时CDB82,那么原三角形中B_.03江苏观察与发现:小明将三角形纸片ABCABAC沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片如图;再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到AEF如图.小明认为AEF是等腰三角形,你同意吗请说明理由.实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE如图;再沿过点E的直线折叠,使点D落在BE上的点D处,折痕为EG如图;再展平纸片如图.求图中的大小.【例4】如图,在ABC中,AD为BAC的平分线,EF是AD的垂直平分线,E为垂足,

37、EF交BC的延长线于点F,求证:BCAF【解法指导】EF是AD的中垂线,那么可得AEFDEF,EAFEDF从而利用角平分线的定义与三角形的外角转化即可证明:EF是AD的中垂线,AEDE,AEFDEF,EFEF,AEFDEF,243,3B1,24B1,12,B4【变式题组】01如图,点D在ABC的BC边上,且BCBDAD,那么点D在_的垂直平分线上02如图,ABC中,ABC90,C15,DEAC于E,且AEEC,假设AB3cm,那么DC_cm03如图,ABC中,BAC126,DE、FG分别为AB、AC的垂直平分线,那么EAG_04.ABC中,ABAC,AB边的垂直平分线交AC于F,假设AB12c

38、m,BCF的周长为20cm,那么ABC的周长是_cm【例5】眉山如图,在33的正方形格点图中,有格点ABC和DEF,且ABC和DEF关于某直线成轴对称,请在下面的备用图中画出所有这样的DEF【解法指导】在正方形格点图中,如果条件中没有给对称轴,在找对称轴时,通常找图案居中的水平直线、居中的竖直直线或者斜线作为对称轴假设以图案居中的水平直线为对称轴,所作的DEF如图所示;假设以图案居中的竖直直线为对称轴,所作的DEF如图所示;假设以图案居中的斜线为对称轴,所作的DEF如图所示【变式题组】01泰州如图,在22的正方形格点图中,有一个以格点为顶点的ABC,请你找出格点图中所有与ABC成轴对称且也以格

39、点为顶点的三角形,这样的三角形共有_个02绍兴如图甲,正方形被划分成16个 全等的三角形,将其中假设干个三角形涂黑,且满足以下条件:涂黑局部的面积是原正方形面积的一半;涂黑局部成轴对称图形如图乙是一种涂法,请在图13中分别设计另外三种涂法在所设计的图案中,假设涂黑局部全等,那么认为是同一种不同涂法,如图乙与图丙【例6】如图,牧童在A处放牛,其家在B处,假设牧童从A处出发牵牛到河岸CD处饮水后回家,试问在何处饮水,所求路程最短【解法指导】所求问题可转化为CD上取一点M,使其AMBM为最小;此题利用轴对称知识进展解答解:先作点A关于直线CD的对称点A,连接AB交CD于点M,那么点M为所求,下面证明

40、此时的AMBM最小证明:在CD上任取与M不重合的点M,AA关于CD对称,CD为线段AA的中垂线,AMAM,MAM,在AMB中,有ABAMBM,AMBMAMBM,AMBMAMBM,即AMBM最小【变式题组】01山西设直线l是一条河,P、Q两地相距8千米,P、Q两地到l地距离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站向P、Q两地供水现在如下四种铺设管道方案,图中的实线表示辅设的管道,那么铺设的管道最短的是 02假设点A、B是锐角MON内两点,请在OM、ON上确定点C、点D,使四边形ABCD周长最小,写出你作图的主要步骤并标明你确定的点演练稳固反响提高01黄冈如图,ABC与ABC关于直线

41、l对称,且A78,C48,那么B的度数是 A48B54C74D7802泰州如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是 A正三角形 B正方形 C正五边形 D正六边形03图1是四边形纸片ABCD,其中B120,D50,假设将其右下角向内折出PCR,恰使CPAB,RCAD,如图2所示,那么C A80B85C95D11004如图,阴影局部组成的图案既是关于x轴成轴对称的图形又是关于y轴成轴对称的图形,假设点A的坐标是1,3,那么点M和点N的坐

42、标分别是 AM1,3,N1,3 BM1,3,N1,3 CM1,3,N1,3 DM1,3,N1,305点P关于x轴对称的对称点P的坐标是3,5,那么点P关于y轴对称的对称点的坐标是 A3,5 B5,3 C3,5 D5,306M1a,2a2关于y轴对称的点在第二象限,那么a的取值范围是 A1a1 B1a1 Ca1 Da107杭州如图,镜子中号码的实际号码是_08贵阳如图,正方形ABCD的边长为4cm,那么图中阴影局部的面积为_cm2.09点A2a3b,2和B8,3a2b关于x轴对称,那么ab_.10如图,在ABC中,OE、OF分别是AB、AC中垂线,且ABO20,ABC45,求BAC和ACB的度数

43、11如图,C、D、E、F是一个长方形台球桌的4个顶点,A、B是桌面上的两个球,若何击打A球,才能使A球撞击桌面边缘CF后反弹能够撞击B球请画出A球经过的路线,并写出作法12如图,P为ABC的平分线与AC的垂直平分线的交点,PMBC于M,PNBA的延长线于N求证:ANMC13荆州有如图“的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个 ,且使每个正方形图案都是轴对称图形,在网格中画出你拼成的图画出的两个图案不能全等培优升级奥赛检测01浙江竞赛试题如图,直线l1与直线l2相交,60,点P在内不在l1l2上小明用下面的方法作P的对称点:先以l1为对称轴作

44、点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,如此继续,得到一系列P1、P2、P3Pn与P重合,那么n的最小值是 A5 B6 C7 D802在平面直角坐标系中,直线l过点M3,0,且平行于y轴如果ABC三个顶点的坐标分别是A2,0,B1,0,C1,2,ABC关于y轴的对称图形A1B1C1,A1B1C1关于直线l的对称图形是A2B2C2,写出A2B2C2的三个顶点的坐标;如果点P的坐标是a,0,其中a0,点P关于y轴的对称点是点P1,点P1关于直线l的对称点是P2,求PP2的长03荆

45、州某住宅小区拟栽种12棵风景树,假设想栽成6行,每行4棵,且6行树所处位置连成线后能组成精巧的对称图案,请你仿照举例在下面方框中再设计两种不同的栽树方案04宜昌:如图,AF平分BAC,BCAF,垂足为E,点D与点A关于点E对称,PB分别与线段CF、AF相交于P、M求证:ABCD;假设BAC2MPC,请你判断F与MCD的数量关系,并说明理由05在ABC中,BAC90,点A关于BC边的对称点为A,点B关于AC边的对称点为B,点C关于AB边的对称点为C,假设SABC1,求SABC06湖州市竞赛试题小王同学在小组数学活动中,给本小组出了这样一道“对称跳棋题:如图,在作业本上画一条直线l,在直线l两边各

46、放一粒围棋子A、B,使线段AB长a厘米,并关于直线l对称,在图中P1处有一粒跳棋子,P1距A点b厘米、与直线l的距离C厘米,按以下程序起跳:第1次,从P1点以A为对称中心跳至P2点;第2次,从P2点以l为对称轴跳至P3点;第3次,从P3点以B为对称中心跳至P4点;第4次,从P4以l为对称轴跳至P1点;画出跳棋子这4次跳过的路径并标注出各点字母;画图工具不限棋子按上述程序跳跃2011次后停下,假设a8,b6,c3,计算这时它与A的距离是多少07湖州如图,平面直角坐标系,A、B两点的坐标分别为A2,3,B4,1假设Pp,0是x轴上的一个动点,那么当p_时,PAB的周长最短;假设Ca,0,Da3,0

47、是x轴上的两个动点,那么当a_时 ,四边形ABCD的周长最短;设M、N分别为x轴和y轴上的动点,请问:是否存在这样的点Mm,0、N0,n,使四边形ABMN的周长最短假设存在,请求出m_,n_不必写解答过程;假设不存在,请说明理由第4讲 等腰三角形考点方法破译1等腰三角形及其性质有两条边相等的三角形叫做等腰三角形,等腰三角形是轴对称图形,因此它的性质有:等腰三角形的两个底角相等即等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合即等腰三角形三线合一2等腰三角形的判定证明一个三角形是等腰三角形的 根本方法是:从定义入手,证明一个三角形有两条边相等;从角入手,证明一个三角形有两个角

48、相等,依据是等腰三角形判定定理;等角对等边3构造等腰三角形的常用方法角平分线平行线等腰三角形 角平分线垂线或高等腰三角形线段中垂线构造等腰三角形 将2倍角转化为相等角构造等腰三角形经典考题赏析 等腰三角形一腰上的高与另一腰所成的夹角为400,那么这个等腰三角形的底角为_.【解法指导】 假设问题中涉及到三角形的高,那么要分别考虑三角形的高是在三角形的外,三角形内的情况解:如图1,当一腰上的高在三角形内时,ACD400,A500BACB QUOTE 错误! 未找到引用源。如图2,当一腰上的高在三角形外时,ACD400,DAC500DACBACB2BBACB250,故填650或250.【变式题组】0

49、1呼和浩特在等腰ABC中,ABAC,一边上的中线BD将这个三角形的周长分为15和12两个局部,那么这个等腰三角形的底边长为A.7 B.11 C.7或11 D7或1002.黄冈在ABC中,ABAC,AB的垂直平分线与AC所在的直线相交所得到锐角为500,那么B_度03.襄樊在ABC中,ABAC12cm,BC6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿BAC的方向运动设运动时间为t,那么当t_秒时,过D、P两点的直线将ABC的周长分成两个局部,使其中一局部是另一局部的2倍【例】 如图,在ABC中,ABAC,点D在AC上,ADBDBC,求A的度数【解法指导】 图中的等腰三角形多,可

50、利用等腰三角形的性质,用方程的思想求角的度数解:设Ax,BDAD,AABDx,BDCAABD2x,BDBC,CBDC2x,ABAC, CABC2x,在ABC中, AABCACB180 x2x2x180,x36,A36【变式题组】01如图,在ABC中,ABAC,BDBC,ADDEEB,求A的度数02如图,在ABC中,ABAC,BCBD EDEA,求A的大小【例】 坐标原点O和点A2,2,B是坐标轴上的一点假设AOB是等腰三角形,那么这样的点B一共有 个A4 B5 C6 D8【解法指导】AOB是等腰三角形,但不能确定哪条边是等腰三角形的底,因而要分三种情况进展说明AOOB,OAAB,BABO,又B

51、是坐标轴上的点要考虑x轴与y轴两种情况解:如图1,当OA是底边时,B在OA的中垂线上,又B在坐标轴上,因而B是OA中垂线与坐标轴的交点;如图2,当OA为腰时,假设O为顶点,那么B在以O为圆心,OA为半径的圆上,又B在坐标轴上,因而B是圆与坐标轴的交点;如图3,当OA为腰时,假设A为顶点,那么B在以A为圆心,OA为半径的圆上,又B在坐标轴上,因而B是圆与坐标轴的交点.应选D.【变式题组】01(海南竞赛试题)在平面直角坐标系xOy内,A3,3,点P是y轴上一点,那么使AOP为等腰三角形的点P共有 A2个B3个C4个D5个02如图,在平面直角坐标系中,点A的坐标是(1,0),点B的坐标是0, QUO

52、TE 错误! 未找到引用源。,点C在坐标平面内假设以A、B、C为顶点构成的三角形是等腰三角形,且底角为30度,那么满足条件的点C有_个ABCDPE第2题图第4题图第3题图03.南昌如图,长方形纸片ABCD,点E是AB的中点,点G是BC上一点,BEG600,现沿直线EG将纸片折叠,使点B落在纸片中的点H处,连接AH,那么与BEG相等的角的个数为 A4 B3 C2 D1ACBMDE(例4题图)04济南如以下图,矩形ABCD中,AB4,BC QUOTE 错误! 未找到引用源。,点E是折线段ADC上的一个动点点E与点A不重合,点P是点A关于BE的对称点在点E运动的过程中,使PCB为等腰三角形的点E的位

53、置共有 A2个B3个C4个D5个【例】枣庄两个全等的含30,60角的三角板ADE和三角板ABC如以下图放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,连结ME,MC试判断EMC的形状,并说明理由【解法指导】判断MEC为等腰直角三角形,M为直角顶点,即想证EMC900,而ABD为等腰三角形,M是BD的中点,假设连接AM那么有AMD900,因而只需证DMEAMC,利用全等三角形即可解:的形状是等腰直角三角形,理由如下:连接,由题意得: 又, 又, 所以的形状是等腰直角三角形 【变式题组】01如图,在等腰直角三角形ABC中,P是斜边BC的中点,以P为直角顶点的两边分别与边AB、AC交于点

54、E、F,当EPF绕顶点P旋转时(点E不与A、B重合),PEF也始终是等腰三角形,请你说明理由02如图,在等腰三角形ABC中,ACB900,D是BC的中点,DEAB垂足为E,过点B作BFAC交DE的延长线于点F,连接CF交AD于G求证:ADCF;连接AF,试判断ACF的形状,并说明理由03如图,ABC中,ACB900,ACBC,CO为中线现将一直角三角板顶点放在点O上并绕点O旋转,假设三角板的两直角边分别交AC、CB的延长线于点G、H试写出图中除ACBC,OAOBOC外其他所有相等的线段;请选一组你写出的相等线段给予证明【例】 我们知道:有两条边相等的三角形叫做等腰三角形类似地,我们定义:至少有

55、一组对边相等的四边形叫做等对边四边形请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;如图,在中,点分别在上,设相交于点,假设,请你写出图中一个与相等的角,并猜测图中哪个四边形是等对边四边形;在中,如果是不等于的锐角,点分别在上,且探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论【解法指导】 证明两条线段相等时,假设两条线段在同一三角形中,可证明它们所对的角相等假设两条线段在不同的三角形中,那么证它们所在的两个三角形全等,假设三角形不全等,即可通过构造全等三角形或等腰三角形解决问题解:如:平行四边形、等腰梯形等答:与A相等的角是BOD或COE,四边形DBCE是等对边四边形

56、;图1答:此时存在等对边四边形,是四边形DBCE证法一:如图1,作CGBE于G点,作BFCD交CD延长线于F点DCBEBC QUOTE 错误! 未找到引用源。A,BC为公共边,BCFCBG,BFCG,BDFABEEBCDCB,BECABEA,BDFBEC,可证BDFCEG,BDCE四边形DBCE是等边四边形图2证法二:如图2,以C为顶点作FCBDBC,CF交BE于F点DCBEBC QUOTE 错误! 未找到引用源。A,BC为公共边,BDCCFB,BDCF,BDCCFB,ADCCFE,ADCDCBEBCABE,FECAABE,ADCFEC,FECCFE,CFCE,BDCE,四边形DBCE是等边四

57、边形【变式题组】01如图,在 QUOTE 错误! 未找到引用源。ABC中,B2C,AD为BAC的平分线求证:ACABBD.02(天津初赛试题)如图,在四边形ABCD中,ACBBAD1050,ABCADC450,假设AB2,求CD的长03如图,在 QUOTE 错误! 未找到引用源。ABC中,ABAC,D在AB上,F在AC延长线上,BDCF求证DEEF.【变式题组】01(重庆)一个等腰三角形两内角的度数之比为1:4,那么这个等腰三角形顶角的度数为A200B1200C200或1200D360002云南等腰三角形的两边分别为6和3,那么此等腰三角形周长为A9 B15 C15 D12或1503.云南如图

58、,等腰 QUOTE 错误! 未找到引用源。ABC的周长为21,底边BC5,AB的垂直平分线DE交AB于点D,交AC于点E,那么 QUOTE 错误! 未找到引用源。BEC的周长为 A13 B14 C15 D1604如图,C、E和B、D、F分别在GAH的两边上,且ABBCCDDEEF,假设A180,那么GEF的度数是 A800B900C1000D108005如图,Rt QUOTE 错误! 未找到引用源。ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EFAB于F,那么以下结论中不正确的选项是AACDB B.CHCEEFC.CHHDD.ACAF06如图, QUOTE 错误! 未找到引用源。A

59、BC中,ABC与ACB的平分线交于点F,过点F作DEBC交AB于点D,交AC于点E,那么以下结论: QUOTE 错误! 未找到引用源。BDF和 QUOTE 错误! 未找到引用源。CEF都是等腰三角形;DEBDCE; QUOTE 错误! 未找到引用源。ADE的周长等于AB与AC的和;BFCF.其中正确的有ABCD07.武汉如图,O是四边形ABCD内一点,OAOBOC, ABCADC700,那么DAODCO的大小是 A700B1100C1400D150008滨州等腰 QUOTE 错误! 未找到引用源。ABC的周长为10,假设设腰长为x,那么x的取值范围是_.09如以下图,在 QUOTE 错误! 未

60、找到引用源。ABC中,ABAC,A360,BC2,BD是 QUOTE 错误! 未找到引用源。ABC的角平分线,那么AD_.10(威海)如图,ABAC,BDBC,假设A400,那么ABD的度数是_.11(乌鲁木齐) 在一次数学课上,王教师在黑板上画出图6,并写下了四个等式:,要求同学从这四个等式中选出两个作为条件,推出是等腰三角形请你试着完成王教师提出的要求,并说明理由写出一种即可:BEDAC求证:是等腰三角形证明:12泰安 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结请找出图2中的全等三角形,并给予证明说明:结论中不得含有未标识的字母;证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论