2022届四川省广安高三第一次调研测试数学试卷含解析_第1页
2022届四川省广安高三第一次调研测试数学试卷含解析_第2页
2022届四川省广安高三第一次调研测试数学试卷含解析_第3页
2022届四川省广安高三第一次调研测试数学试卷含解析_第4页
2022届四川省广安高三第一次调研测试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设命题:,则为A,B,C,D,2若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD3已知向量

2、,若,则( )ABCD4已知满足,则( )ABCD5已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )ABCD6等腰直角三角形BCD与等边三角形ABD中,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) ABCD7如图所示,矩形的对角线相交于点,为的中点,若,则等于( )ABCD8已知函数,则方程的实数根的个数是( )ABCD9已知数列中,(),则等于( )ABCD210若复数满足,则()ABCD11中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点

3、的多边形为正五边形,且,则( )ABCD12已知,是平面内三个单位向量,若,则的最小值( )ABCD5二、填空题:本题共4小题,每小题5分,共20分。13已知实数,对任意,有,且,则_.14将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为_15在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点若以AB为直径的圆与圆x2(y2)21相外切,且APB的大小恒为定值,则线段OP的长为_16经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是_三、解答题:共70分。解答应写出文字

4、说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面(2)若,求二面角的余弦值.18(12分)已知数列的前项和为,且满足()求数列的通项公式;()证明:19(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)20(12分)如图:在中,.(1)求角;(2)设为的中点,求中线的长.21(12分)如图,在四棱锥中,平面,为的中点(1)求证:平面;(2)求二面角的余弦值22(10分)某企业现有AB两套设备生产某种产品,现从A

5、,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计AB设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、

6、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2D【解析】利用复数代数形式的乘除运算化简

7、,再由实部为求得值【详解】解:在复平面内所对应的点在虚轴上,即故选D【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题3A【解析】根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】, ,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.4A【解析】利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.5C【解析】在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的

8、最小值.【详解】直线是曲线的一条对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.6A【解析】设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,

9、即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.7A【解析】由平面向量基本定理,化简得,所以,即可求解,得到答案【详解】由平面向量基本定理,化简,所以,即,故选A【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题8D【解析】画出函数 ,将方程看作交点个数,运用图象判断根的个数【详解】画出函数令有两解 ,则分别有3个

10、,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题9A【解析】分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:,(),数列是以3为周期的周期数列,故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.10C【解析】把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解【详解】解:由,得,故选C【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题11A【解析】利用平面向量的概念、平面向量的加法、减

11、法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题12A【解析】由于,且为单位向量,所以可令,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果【详解】解:设,则,从而,等号可取到故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题二、填空题:本题共4小题,每小题5分,共20分。13-1【解析】由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解【详解】由,且,则,又,所以,令得:,所以,故答

12、案为:【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平14【解析】根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.【详解】函数的图像向右平移个单位得,.故答案为:.【点睛】本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.15【解析】分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切且APB的大小恒为定值,即可求出线段OP的长详解:设O2(a,0),圆O2的半径为r(

13、变量),OP=t(常数),则APB的大小恒为定值,t,|OP|=故答案为点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题16【解析】作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,故,因此,.故答案为:.【点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)详见解析;(2).【解析】(1)连接,由菱形的性质以及中位线,得,由平面平面,且

14、交线,得平面,故而,最后由线面垂直的判定得结论.(2)以为原点建平面直角坐标系,求出平面平与平面的法向量,最后求得二面角的余弦值为.【详解】解:(1)连结 ,且是的中点,平面平面,平面平面,平面. 平面,又为菱形,且为棱的中点,.又,平面平面.(2)由题意有,四边形为菱形,且 分别以,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则设平面的法向量为由,得,令,得取平面的法向量为二面角为锐二面角,二面角的余弦值为【点睛】处理线面垂直问题时,需要学生对线面垂直的判定定理特别熟悉,运用几何语言表示出来方才过关,一定要在已知平面中找两条相交直线与平面外的直线垂直,才可以证得线面垂直,其次考查了

15、学生运用空间向量处理空间中的二面角问题,培养了学生的计算能力和空间想象力.18(),()见解析【解析】(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等比数列求和公式,即可得到本题答案.【详解】()解:由题,得当时,得;当时,整理,得数列是以1为首项,2为公比的等比数列,;()证明:由()知,故故得证【点睛】本题主要考查根据的关系式求通项公式以及利用等比数列的前n项和公式求和并证明不等式,考查学生的运算求解能力和推理证明能力.19(1);(2).【解析】(1)首先对函数求导,根据函数存在一个极大值点和一个极小值点求出a的取值范围;(2)首先求出的值,再根据求出实数a的取值范

16、围.【详解】(1)函数的定义域为是,若有两个极值点,则方程一定有两个不等的正根,设为和,且,所以解得,此时,当时,当时,当时,故是极大值点,是极小值点,故实数a的取值范围是;(2)由(1)知,则,由,得,即,令,考虑到,所以可化为,而,所以在上为增函数,由,得,故实数a的取值范围是.【点睛】本题主要考查了利用导数研究函数的极值点和单调性,利用函数单调性证明不等式,属于难题.20(1);(2)【解析】(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【详解】(1),.由正弦定理,即.得,为钝角,为锐角,故.(2),.由正弦定理得,即

17、得.在中由余弦定理得:,.【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.21(1)见解析;(2)【解析】(1) 取的中点,连接,根据中位线的方法证明四边形是平行四边形.再证明与从而证明平面,从而得到平面即可.(2) 以所在的直线为轴建立空间直角坐标系,再求得平面的法向量与平面的法向量进而求得二面角的余弦值即可.【详解】(1)证明:如图,取的中点,连接.又为的中点,则是的中位线.所以且.又且,所以且.所以四边形是平行四边形.所以.因为,为的中点,所以.因为,所以.因为平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知两两互相垂直,所以分别以所在的直线为轴建立如图所示的空间直角坐标系:因为,所以点.则.设平面的法向量为,由,得,令,得平面的一个法向量为;显然平面的一个法向量为;设二面角的大小为,则.故二面角的余弦值是.【点睛】本题主要考查了线面垂直的证明以及建立空间直角坐标系求解二面角的问题,需要用到线线垂直与线面垂直的转换以及法向量的求法等.属于中档题.22(1)30.2,29;(2)B设备【解析】(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论