2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)_第1页
2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)_第2页
2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)_第3页
2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)_第4页
2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一个是符合题目要求的1(5分)不等式1的解集为()A(,1)B(0,1)C(1,+)D(0,+)2(5分)ABC中,若a=1,b=2,sinA=,则sinB=()ABCD3(5分)等比数列an中,a2+a4=20,a3+a5=40,则a6=()A16B32C64D1284(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2

2、akm,灯塔A在观测站C的北偏东20,灯塔B在观测站C的南偏东70,则灯塔A与灯塔B之间的距离为()AakmB2akmCakmDakm5(5分)“ab“是“a3b3”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件6(5分)函数f(x)=x3+3x2+9x+a,x2,2的最小值为2,则f(x)的最大值为()A25B23C21D207(5分)等差数列an的前n项和为Sn,若a1000+a1018=2,则S2017=()A1008B1009C2016D20178(5分)ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A2B2C4D69(

3、5分)已知直线y=x+k与曲线y=ex相切,则k的值为()AeB2C1D010(5分)过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则=()A1B2C3D不确定11(5分)在ABC中,若BC=2,A=60,则有()A最大值2B最小值2C最大值2D最小值212(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A一个点B椭圆C双曲线D以上选项都有可能二、填空题:本大题共4小题,每小题5分,共20分)13(5分)若命题P:xR,2x+x20,则P为 14(5分)若x,y满足,则z=x+2y的取

4、值范围为 15(5分)数列an满足a1=1,a2=2,且an+2=(nN*),则ai= 16(5分)已知F为双曲线C:=1的左焦点,A(1,4),P是C右支上一点,当APF周长最小时,点F到直线AP的距离为 三、解答题:本大题共6小题,共70分解答写出文字说明、证明过程或演算过程17(10分)已知an是等差数列,bn是等比数列,且b2=2,b3=4,a1=b1,a8=b4()求an的通项公式;()设cn=an+bn,求数列cn的前n项和18(12分)在ABC中,a,b,c分别为角A,B,C的对边,a2c2=b2,a=6,sinB=()求角A的正弦值;()求ABC的面积19(12分)已知p:函数

5、f(x)=lg(x22x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+10成立,若“pq”为真,“pq”为假,求实数a的取值范围20(12分)Sn为数列an的前n项和,已知an0,an2+an=2Sn()求an的通项公式;()若bn=,求数列bn的前n项和Tn21(12分)已知函数f(x)=lnx()y=kx与f(x)相切,求k的值;()证明:当a1时,对任意x0不等式f(x)ax+1恒成立22(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为

6、,求AOB面积的最大值2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一个是符合题目要求的1(5分)不等式1的解集为()A(,1)B(0,1)C(1,+)D(0,+)【分析】不等式可化为x(x1)0,即可得到不等式1的解集【解答】解:不等式可化为x(x1)0,0 x1,不等式1的解集为(0,1),故选B【点评】本题考查不等式的解法,考查学生转化问题的能力,正确转化是关键2(5分)ABC中,若a=1,b=2,sinA=,则sinB=()ABCD【分析】利用正弦定理求得sinB的值【解

7、答】解:ABC中,若a=1,b=2,sinA=,则由正弦定理可得=,即 =,sinB=,故选:A【点评】本题主要考查正弦定理的应用,属于基础题3(5分)等比数列an中,a2+a4=20,a3+a5=40,则a6=()A16B32C64D128【分析】由等比数列通项公式列出方程组,求出首项和公差,由此能求出a6【解答】解:等比数列an中,a2+a4=20,a3+a5=40,解得a=2,q=2,a6=225=64故选:C【点评】本题考查等比数列的第6项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用4(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C

8、的北偏东20,灯塔B在观测站C的南偏东70,则灯塔A与灯塔B之间的距离为()AakmB2akmCakmDakm【分析】先根据题意确定ACB的值,再由勾股定理可直接求得|AB|的值【解答】解:根据题意,ABC中,ACB=1802070=90AC=akm,BC=2akm,由勾股定理,得AB=akm,即灯塔A与灯塔B的距离为akm,故选:C【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用勾股定理解三角形等知识,属于基础题5(5分)“ab“是“a3b3”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件【分析】根据不等式的性质结合充分条件和

9、必要条件的定义进行判断【解答】解:由a3b3得ab,则“ab“是“a3b3”的充要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键比较基础6(5分)函数f(x)=x3+3x2+9x+a,x2,2的最小值为2,则f(x)的最大值为()A25B23C21D20【分析】先将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值,再根据条件求出a的值,最小值即可求得【解答】解:求导函数可得f(x)=3x2+6x+9=3(x+1)(x3)令f(x)=3x2+6x+9=0,解得x=1或3x2,1)时,f(x)0,函数单调减,x(1,

10、2时,f(x)0,函数单调增,函数在x=1时,取得最小值,在x=2或x=2时,函数取得最大值,f(1)=5+a=2,a=3,f(2)=2+a=5,f(2)=22+a=25,函数的最大值为25,故选:A【点评】本题考查了利用导数求闭区间上函数的最值,解题的关键是利用导数工具,确定函数的最值,属于中档题7(5分)等差数列an的前n项和为Sn,若a1000+a1018=2,则S2017=()A1008B1009C2016D2017【分析】由等差数列的性质得a1+a2017=2由此能求出结果【解答】解:等差数列an的前n项和为Sn,a1000+a1018=2,a1+a2017=2,S2017=(a1+

11、a2017)=2017故选:D【点评】本题考查等差数列的前2017项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用8(5分)ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A2B2C4D6【分析】由已知利用余弦定理即可计算得解【解答】解:a=2,c=4,cosA=,由余弦定理a2=b2+c22bccosA,可得:20=b2+162,整理可得:3b216b12=0,解得:b=6或(舍去)故选:D【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题9(5分)已知直线y=x+k与曲线y=ex相切,则k的值为()AeB2C1D0【分析

12、】设切点为(x0,y0),求出切线斜率,利用切点在直线上,代入方程,即可得到结论【解答】解:设切点为(x0,y0),则y0=ex0,y=(ex)=ex,切线斜率k=ex0,又点(x0,y0)在直线上,代入方程得y0=k+x0,即ex0=ex0 +x0,解得x0=0,k=1,故选:C【点评】本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题10(5分)过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则=()A1B2C3D不确定【分析】可得出抛物线y2=4x的焦点为(1,0),并画出图形,根据题意可设AB的方程为x=ky+1,联立抛物线方程消去x便得到y24ky4=

13、0,从而得出y1y2=4,然后可设,这样便可求出的值【解答】解:抛物线y2=4x的焦点坐标为(1,0),如图:设直线AB的方程为x=ky+1,代入y2=4x消去x得:y24ky4=0;y1y2=4;设,则:故选C【点评】考查抛物线的标准方程,过定点且斜率不为0的直线方程的设法,韦达定理,以及向量数量积的坐标运算11(5分)在ABC中,若BC=2,A=60,则有()A最大值2B最小值2C最大值2D最小值2【分析】可先画出图形,根据BC=2,A=60,对两边平方,进行数量积的运算即可得到,从而得出,这样便可求出,从而得出正确选项【解答】解:如图,;,且BC=2,A=60;即;有最小值2故选B【点评

14、】考查向量加法的几何意义,向量数量积的运算及计算公式,不等式a2+b22ab的运用,以及不等式的性质12(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A一个点B椭圆C双曲线D以上选项都有可能【分析】结合双曲线的定义及圆与直线的相关性质,推导新的结论,熟练掌握双曲线的定义及圆与直线的性质是解决问题的关键【解答】解:A为O外一定点,P为O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QAQO=QPQO=OP=R,即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以

15、O,A为焦点,OP为实轴长的双曲线故选:C【点评】双曲线是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹二、填空题:本大题共4小题,每小题5分,共20分)13(5分)若命题P:xR,2x+x20,则P为x00,2+x020【分析】根据全称命题的否定是特称命题即可得到结论【解答】解:命题是全称命题,则p为:x00,2+x020,故答案为:x00,2+x020【点评】本题主要考查含有量词的命题的否定,比较基础14(5分)若x,y满足,则z=x+2y的取值范围为0,【分析】画出约束条件的可行域,利用目标函数的几何意义,求解范围即

16、可【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=+,当y=+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=则z=x+2y的取值范围为:0,故答案为:0,【点评】本题考查的知识点是简单线性规划的应用,其中利用角点法是解答线性规划类小题最常用的方法,一定要掌握15(5分)数列an满足a1=1,a2=2,且an+2=(nN*),则ai=1【分析】利用a1=1,a2=2,且an+2=(nN*),可得an+3=an即可得出【解答】解:a1=1,a2=2,且an+2=(nN*),a3=3,a4=1,a5=2,

17、an+3=an则ai=33(a1+a2+a3)+a1=0+1=1故答案为:1【点评】本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题16(5分)已知F为双曲线C:=1的左焦点,A(1,4),P是C右支上一点,当APF周长最小时,点F到直线AP的距离为【分析】设双曲线的右焦点为F(4,0),由题意,A,P,F共线时,APF周长最小,求出直线AP的方程,即可求出点F到直线AP的距离【解答】解:设双曲线的右焦点为F(4,0),由题意,A,P,F共线时,APF周长最小,直线AP的方程为y=(x4),即4x+3y16=0,点F到直线AP的距离为=,故答案为:【点评】本题考查双曲

18、线的方程与性质,考查点到直线的距离公式,属于中档题三、解答题:本大题共6小题,共70分解答写出文字说明、证明过程或演算过程17(10分)已知an是等差数列,bn是等比数列,且b2=2,b3=4,a1=b1,a8=b4()求an的通项公式;()设cn=an+bn,求数列cn的前n项和【分析】(I)利用等差数列与等比数列的通项公式即可得出(II)利用等差数列与等比数列的求和公式即可得出【解答】解:()bn是等比数列,且b2=2,b3=4,q=2,b1=1所a1=b1=1,a8=b4=23=88=1+7d,解得公差d=1an=1+(n1)=n()由(I)可知:bn=2n1,cn=an+bn=n+2n

19、1cn的前n项和=(1+2+n)+(1+2+22+2n1)=+=+2n1【点评】本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题18(12分)在ABC中,a,b,c分别为角A,B,C的对边,a2c2=b2,a=6,sinB=()求角A的正弦值;()求ABC的面积【分析】()由已知利用余弦定理可求cosA,进而利用同角三角函数基本关系式可求sinA的值()由已知利用正弦定理可求b的值,代入已知可求c的值,利用三角形面积公式即可计算得解【解答】(本题满分为12分)解:()a2c2=b2,可得cosA=,(3分)所以sinA=.(6分)()因为:asinB=bs

20、inA,a=6,sinA=,sinB=,所以:解得b=8,.(8分)因为:a=6,b=8,代入,可得:c=10或,.(10分)所以:SABC=bcsinA=24或.(12分)【点评】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题19(12分)已知p:函数f(x)=lg(x22x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+10成立,若“pq”为真,“pq”为假,求实数a的取值范围【分析】若“pq”为真,“pq”为假,则p,q一真一假,进而可得实数a的取值范围【解答】解:当P真时,f(x)=lg(x22x+a)的

21、定义域为R,有=44a0,解得a1.(2分)当q真时,对任意实数x,不等式4x2+ax+10成立,所以=a2160,解得4a4 .(4分)又因为“pq”为真,“pq”为假,所以p,q一真一假,.(6分)当p真q假时,解得a4.(8分)当p假q真时,解得:4a1.(10分)所以实数a的取值范围是(4,14,+).(12分)【点评】本题以命题的真假判断与应用为载体,考查了复合命题,对数函数的图象和性质,不等式恒成立问题,难度中档20(12分)Sn为数列an的前n项和,已知an0,an2+an=2Sn()求an的通项公式;()若bn=,求数列bn的前n项和Tn【分析】(I)利用递推关系、等差数列的通

22、项公式即可得出(II)bn=,利用“裂项求和”方法即可得出【解答】解:()an2+an=2Sn,=2Sn+1,两式子相减得:(an+1+an)(an+1an)=an+1+an,an0,an+1an=1,令n=1得=2S1=2a1,解得a1=1数列an是首项为1,公差为1的等差数列,an=1+(n1)=n()bn=,Tn=+=【点评】本题考查了数列递推关系、等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题21(12分)已知函数f(x)=lnx()y=kx与f(x)相切,求k的值;()证明:当a1时,对任意x0不等式f(x)ax+1恒成立【分析】()求出函数的导数,设出切点坐标,求出k的值即可;()问题转化为ax+lnx1恒成立,当a1时,记h(x)=ax+lnx,根据函数的单调性求出h(x)的最小值,从而证出结论即可【解答】()解:由f(x)=lnx,得:f(x)=,设切点坐标为(x0,y0),则,解得:k=.(5分)()证明:只需证f(x)g(x)1,即ax+lnx1恒成立,当a1时,记h(x)=ax+lnx,则在(0,+)上,h(x)1,h(x)=,.(9分)a1,x0,ax+a10,x(0,1)时,h(x)0,h(x)单调递减;x(1,+)时,h(x)0,h(x)单调递增h(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论