土木1144外文翻译_第1页
土木1144外文翻译_第2页
土木1144外文翻译_第3页
土木1144外文翻译_第4页
土木1144外文翻译_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、CHANGCINS TITUTE OF TECHNOLOGYComponents of A Building and Tall Buildings建筑的组成部分及结构资料来源:ht/p-56543829.html设计题目:长春市双叶科研办公楼建筑、结构、施工设计 学生学院名称:土木专业名称:土木工程专业班级名称:土木 1144 班号:1105411506学指导教师:赵教师:讲师完成时间:2015.3.152015 年 3 月 15 日一、外文原文:Components of A Building and Tall Buildings1. AbstractMaterials and struct

2、ural forms are combined to make up thevarious parts of a building, Including the load-carrying frame, skin,floors,andpartitions.Thebuildingalsohas mechanicalandelectrical systems, such as elevators, heatingand cooling systems,and lighting systems. The superstructure ist part of a buildingabove groun

3、d, and the substructure and foundation ist part of abuilding below ground.The skyscrr owes its existence to two developments of the 19thcentury:steel skeleton construction and the passenger elevator.Steel asa constructionmaterial dates from theroduction of theBessemerconverter in1885.Gustave Eiffel

4、(1832-1932)roducedsteel construction inFrance. His designs for the Galerie desMachines and the Tower for the Paris Exition of 1889 expressed thelightness of the steel framework.The Eiffel Tower, 984 feet (300meters) high, was the tallest structure built by man and was notsurpassed until 40 years lat

5、er by a series of American skyscrrs.Elisha Otis installed theelevator in a departmentinNew York in 1857.In 1889 Eiffel installed theelevators on agrand scale in the Eiffel Tower, whose hydraulic elevators couldtransport2,350 passengers to the summit every hour.2.Load-Carrying FrameUntilthe late 19th

6、 century, theexterior walls of a buildingwere usedas bearing walls to supportthe floors. This constructionis essentially at and lel type,and it is still used in frameconstruction for houses. Bearing-wall construction limited the heightof building because of the enormous wall thickness required ; for

7、instance, the 16-story MonadnockBuilding built in the 1880s inChicago had walls 5 feet (1.5 meters) thick at the lower floors. In1883, Williamaron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction,consisting of steel beams and columns, w

8、asused in 1889. As aconsequence of skeleton construction, the enclosing wallse a“curtain wall” rathern serving a supporting function. Masonrywas the curtain wall materiatil the 1930s, when light metal andglass curtain walls were used. After theroduction of buildingscontinued to increase raly.All tal

9、l buildings were built with a skeleton of steel untilWorld War . After the war, the shortage of steel and the improvedquality of concrete led to tall building being built of reinforcedconcrete. Marina Tower (1962) in Chicago is the tallest concretebuildinghe United Ses; its height588 feet (179 meter

10、s)isexceededby the 650-foot(198-meter)t Office Tower in London andby othertowers.A change in attitudeabout skyscrr construction has brought areturn to the use of thebearing wall.In New York City, the ColumbiaBroadcasting System Building, designedby Eero Saarinen in 1962, hasa perimeter wall consisti

11、ng of 5-foot (1.5meter) wide concretecolumns spaced 10 feet (3 meters) from column center to center. Thisperimeter wall, in effect, constitutes a bearing wall. One reason forthis trend ist stiffness against the action of wind can beeconomically obtained by using the walls of the building as a tube;t

12、he World Trade Center building is another example of this tubeapproach. In contrast, rigid frames or vertical trusses are usuallyprovided to give lateral stability.3.SkinThe skin of a building consists of both transparent elements(windows) and opaque elements (walls). Windows are traditionallyglass,

13、 although plastics are being used, espelly in schools wherebreakage creates a maenance problem. The wall elements, which areused to cover the structure and are supported by it, are built of avariety of materials: brick, precast concrete, stone, opaque glass,plastics,steel,andaluminum.Woodisusedmainl

14、yinhouseconstruction;it is notgenerally used for commerl, industrial, orpublic building becauseof the fire hazard.4. FloorsThe construction ofthe floors in a building depends on the basicstructural framet is used. In steel skeleton construction, floorsare either slabs of concrete resting on steel be

15、ams or a deckconsisting of corrugated steel wiconcrete top. In concreteconstruction, the floors are either slabs of concrete on concretebeams or a series of closely spaced concrete beams (ribs) in twodirections topped within concrete slab, giving the appearance ofa waffle on its underside. The kindo

16、f floort is used depends onthe span betn supporting columnsor walls and the function of thespace. In an apartment building,for instance, where walls andcolumns are spaced at 12 to 18 feet (3.7 to 5.5 meters), the mostpopular construction is a solid concrete slab with no beams.Theunderside of the sla

17、b serves as the ceiling for the space belowit.Corrugated steel decks are often used in office buildings becausethecorrugations, when enclosed by another sheet of metal, form ductsforephone and electrical lines.5.Mechanical and Electrical SystemsA modern building not only contains the space for which

18、 it isended (office, classroom, apartment) but alsocontains ancillaryspace for mechanical and electrical systemsthelp to provide acomfortable environment. These ancillary spain a skyscrroffice building may constitute 25%of the total building area. Theimportance of heating, ventilating,electrical, an

19、d plumbing systemsin an office building is shownby the factt 40% of theconstruction budget is allocated to them. Becauseof the increaseduse of sealed building with windowst cannot beopened, elaboratemechanical systems are provided for ventilation andair conditioning.Ducts and pipes carry fresh air f

20、rom central fan rooms andairconditioning machinery. The ceiling, which is suspended belowtheupper floor construction, conceals the ductwork and containsthelightingunits.Electricalwiringforerandforephonecommunication may also be located in thisceiling space or may beburied in the floor construction i

21、n pipesor conduits. Thereebeen attempts to incorporate the mechanical and electrical systemso the architectureof building by frly expressing them ; forexample, the AmericanRepublic Insurance Company Building(1965) inDes Moines, Iowa, exes both the ducts and the floor structure inananized and elegant

22、 pattern and dispenseswith the suspendedceiling. This type of approaakes itsibleto reduce the costof the building and permits innovations,such ashe span of thestructure.6. Soils and FoundationsAll building are supported on theground,and therefore thenature of the soiles an extremelyimportant conside

23、ration inthe design of any building. The designof a foundation depends onmany soil factors, suchas type of soil, soil stratification,thickness of soil laversand their compaction, and groundwaterconditions. Soils rarelye a single comition ; they generallyare mixtures in layers ofvarying thickness. Fo

24、r evaluation, soilsare graded according to particle size, which increases from silt toclay to sand to gravel to rock. In general, the largarticle soilswill support heavier loadsn the smaller ones. The hardest rockcan support loads up to 100 tons per square foot(976.5 metric tons/sqmeter), but the so

25、ftest silt can support a load of only 0.25 ton persquare foot(2.44 metric tons/sq meter). All soils beneath the surfaceare in a se ofcompaction;t is, they are under a preretis equal to theweight of the soil column above it. Many soils(except for mostsands and gavels) exhibit elastic propertiestheyde

26、form whencompressed under load and rebound when theload isremoved. Theelasticity of soils is often time-dependent,t is,deformationsof the soil occur over a length of time whiay varyfrom minutesto years after a load is imed. Overriodof time,a building may settle if it imesa load on the soil greaternt

27、he natural compaction weight of thesoil. Conversely, abuilding mayheave if it imes loads on thesoil smallernthe naturalcompactionweight. The soil may also flow under theweight of abuilding;t is, it tends to be squeezed out.Due toboth the compaction and flow effects, buildings tendsettle. Uneven sett

28、lements, exemplified by the leaning towers in Pisaand Bologna, cane damaging effectsthe building may lean, wallsand partitions may crack, windows and doors maye inoperative,and,he extreme, a building may collapse. Uniform settlements arenot soserious, although extreme conditions, such as thoseexicoC

29、ity, cane serious consequen. Over the past 100 years, achangein the groundwater level there has caused some buildings tosettlemoren 10 feet (3 meters). Because suovements can occurduringand after construction, carefulysis of the beior ofsoils under a building is vital.The great variability of soils

30、has led to a variety of solutionsto the foundation problem. Where firm soil exists close to thesurface, the simplest solution ist columns on a small slab ofconcrete (spread footing). Where the soil is softer, it is nesaryto spread the column load over agreater area ; in this case, acontinuous slab o

31、f concrete(raft ormat) under the whouilding isused. In cases where the soil nearthe surface is unable to supportthe weight of the building, pilesofwood, steel, or concrete aredriven down to firm soil.The construction of a buildingproceeds naturally from thefoundation upto the superstructure.The desi

32、gn pros, however,proceeds fromthe roof down to the foundation (in the direction ofgravity).he past, the foundation was not subject to systematicinvestigation. A scientific approach to the design of foundations hasbeen developed in the 20th century. Karl Terzaghi of the UnitedSes pioneered studiest m

33、ade itsible to make accuratepredictions of the beior of foundations, using the science of soilmechanics coupled withexploration and testing procedures. Foundationfailuresof the past,such as the classical example of the leaningtower inPisa,ee almost nonexistent. Foundations still area hiddenbostly pa

34、rtof many buildings.Althoughthereebeenmanyadvancementsinbuildingconstructiontechnologyin general, spectacular achievementsebeen madehe design and construction of ultrahigh-rise buildings.Theearlydevelopmentofhigh-risebuildingsbeganwithstructural steel framing.Reinforced concrete and stressed-skubesy

35、stemse since beeneconomically and competitively usedin anumber of structures forboth residential and commerl pures.The high-rise buildings ranging from 50 to 110 storiest arebeingbuilt all over the United Ses are the result of innovations anddevelopment of new structural systems.Greater height entai

36、ls increased column and beam sizes to makebuildings more rigid sot under wind load they will not swayan acceptable limit. Exsive lateral sway maycause seriousrecurring damage to partitions,ceilings, and otherarchitecturals. In addition, exsivesway may causefort to theoccupants of the building becaus

37、eof their perceptionof suotion.Structural systems of reinforcedconcrete, as wellas steel, takefull advantage of the inherent potential stiffness of the totalbuilding and therefore do notrequire additional stiffening to limitthe sway.In a steel structure, forexample, the economy can be defined interm

38、s of thetotal averagety of steel per square foot of floorarea of thebuilding. Curve A in Fig.1 represents the average unitweight of aconventional frame with increasing numbers of stories.Curve B represents the average steel weight if the frame is protectedfrom all lateral loads. The gap betn the upp

39、er boundary andthelower boundary represents the premiumfor all lateral loads. Thegapbetn the upper boundary and thelower boundary representsthepremiumforheightforthetraditionalcolumn-and-beam frame.Structural engineerse developed structural systems wiview toeliminating this premium.7. TubeubeAnother

40、systeminreinforcedconcretefor officebuildingscombines the traditionalshear wall construction with an exteriorframed tube. The systemconsists of an outer framed tube of verycloselyspacedcolumnsandaneriorrigidshearwall tubeenclosing the central servicearea. The system (Fig.2), known as thetube-ube sys

41、tem, made itsible to design the worlds presenttallest(714 ft or 218 m) lightweight concrete building (the 52-storyOne SPlaza Building in Houston) for the unit price of atraditional shear wall structure of only 35 stories.Systemscombiningbothconcreteandsteelealsobeendeveloped, an example of which is

42、the comite system developed bySkidmore,Owings & Merrill in which an exterior closely spaced framedtubeinconcreteenvelopsaneriorsteelframing,therebycombiningthe advantages of bothreinforced concrete and structuralsteel systems. The story One SSquare Building in New Orleans isbased on this system.1.摘要

43、材料和不同的结构形式联合组成建筑物的各种不同部分,包括承重框架,外壳,楼板和隔墙。建筑物也有像升降机,供暖和冷却,照明这样的与机械和电力有关的系统。上部结构是建筑物地面以上的部分,而下部结构和基础则是建筑物地面以下的部分。摩天大楼的出现得益于 19 世纪的两大发展:钢骨架结构和旅客升降机。钢,作为一种建筑材料,源于 1885 年转炉的引入。Gustave Eiffel(1832-1932)将钢结构引入法国。1889 年巴黎展览会的塔和他为 Galerie des机械的设计表现了钢结构的灵活性。 类建造的最高的结构,直到 40 年后才被第一个升降机是在 1857 年被 Elisha铁塔高 984

44、 英尺(300 米),是人一系列的摩天大楼。Otis 安装于纽约的一幢百货公司。在1889 年,Eiffel 在铁塔上安装了第一个大尺寸的升降机,它的水力升降机能在一个小时内运送 2350 个旅客到达顶点。2.承重框架。直到 19 世纪晚期,建筑物外墙被用作支承楼板的承重墙。这种结构本质上一种模型,并且仍然被用于房屋框架结构。承重墙结构由于需要巨大的墙厚而限制了建筑物的高度。例如,芝加哥建于 19世纪 80 年代 16 层的 Monadnock米)。在 1883 年,William,较下层的楼板下的墙厚达 5 英尺(1.5aron Jenney (1832-1907)采用铸铁柱支撑楼板的方式以

45、形成笼状结构。由钢梁和钢柱组成的骨架构造最早用于 1889 年。由于骨架构造,围墙变成一个“幕墙”,胜于起支撑作用。砖石一直被用作幕墙出处:土木工程专业英语,段兵廷主编,理工大学二、外文译文:建筑的组成部分及结构材料,直到 20 世纪 30 年代,轻金属和玻璃幕墙开始被使用。在钢结构引入后,建筑物的高度持续快速地增加。在二次前,所有的建筑都是采用钢结构。战后,钢材的短缺和混凝土质量的改良导致钢筋混凝土建筑的出现。芝加哥的 Marina 塔(1962)是最高的混凝土建筑。它的高度达 588 英尺(179 米),被伦敦的高达 650 英尺(198 米)的邮政和其他塔式建筑所。关于摩天大楼构造观点的

46、转变恢复了承重墙的使用。在纽约城由 Eero Saarinen 于 1962 年设计的哥伦比亚广播系统大楼,有一个由 5 英尺(1.5 米)宽,相邻柱的中心距为 10 英尺(3 米)的混凝土柱组成的环形墙。这个环形墙实际上有效地组成了一个承重墙。产生这种趋向的一个理由是,采用建筑物的墙壁作为一个筒体,可以非常经济地获得起到抗风作用的足够硬度。世界贸易是这种筒体方法的另一个例证。相反地,刚性框架或垂直的桁架通常被用于提供侧向稳定性。3.外壳建筑物的外壳由透明元素(窗)和不透明元素(墙)所组成。尽管正在被使用,窗传统上还是使用玻璃,特别是在学校,破损产生了一个问题。用于覆盖结构并由结构支撑的墙元素

47、由多种材料建造:砖,预制构件,混凝土,石,不透明玻璃,钢和铝。木主要被用于房屋建筑,由于有火灾的,它通常不用于商业,工业和公用建筑。4.楼板建筑物中楼板的构造依赖于所使用的基本结构框架。在钢结构中,楼板或是搁置在钢梁上的混凝土板,或是表面附有混凝土的波状钢组成的凹板。在混凝土结构中,楼板或是搁置在混凝土梁上的混凝土板,或是一系列顶端有一个薄板双向都近距离排列的混凝土梁,在其下部提供了一个多余的空间。这种类型的板的使用依赖于支撑柱或墙间的跨度和空间的功能。例如,在公寓中,当墙和柱的间距在 12 英尺到 18 英尺(3.7 米到 5.5 米),最常用的结构是无梁的实心混凝土板。这种板的下部可以用作

48、其下层空间的天花板。办公大楼中常使用波纹钢楼板,这是因为波纹钢楼板的波纹当由另一块金属板盖上时,可以形成线和电线通道。5.机械和电力系统一个现代建筑不仅包括它所需要的空间(办公室,教室,公寓),还包括帮助提供舒适环境的机械与电力系统的辅助空间。在摩天办公大楼中,这些辅助空间可能总建筑面积的 25%。在办公大楼中,供暖,通风,电力和卫生管道系统的重要性体现在工程预算的 40%被分配给它们。因为使用带有不能开窗的密封性建筑屋的增加,精细的机械系统被用于通风和空调。和管道携带来自风扇室和空气调节机的新鲜空气。悬吊在上部楼板结构下面的天花板,隐藏着管道系统,还包含照明设备。用于动力和通讯的电力配线,也被安置在天花板空间内,或被埋置在楼板结构中的管道内。已经有种种尝试将机械和电力系统通过坦白地表达它们以合并到建筑物的建筑学中。举例来说,在爱荷华州首府得梅因的共和保险公司大楼(1965),管道和楼板结构以一种有组织和优雅的形式在外,用吊顶进行分配。这种方法使得减少建筑物的花费成为可能,并且可以允许结构的跨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论