



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数列求和(一)核心知识整合考点1:数列求和1.公式法(1)直接用等差、等比数列的求和公式求解.(2)掌握一些常见的数列的前n项和公式.;.2.倒序相加法如果一个数列,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的拆项公式:;.5. 分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列
2、,即先分别求和,再合并,形如:(2). 典型例题1.已知数列的首项,前n项和为,.设,则数列的前n项和的取值范围为( )A.B.C.D.答案:C解析 由,可得当时,有,两式相减得,故.又当时,所以数列是首项为3、公比为3的等比数列,故.所以,所以.所以,-,得,化简整理得.因为,所以,又,所以数列是递增数列,所以,所以,故的取值范围是,选C. 变式训练1. 已知等比数列的前n项和为,且,则数列的前n项和( )A.B.C.D.答案:C解析 设的公比为q,由等比数列的性质,知,所以.由与的等差中项为,知,所以,所以,则.故选C.典型例题1. 数列的前10项和为( )A. B. C. D.答案:D解析 由题意得,数列的前10项和为.故选D. 变式训练1. 已知是定义在R上的奇函数,且满足对,则( )A.873B.874C.875D.876
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国金属纳米粒子行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国重组胰蛋白酶EDTA溶液行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国速冻蔬菜行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国运动马达控制器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国轨道开关电源行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国跳跳糖行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国贸易代理行业市场深度调研及竞争格局与发展趋势研究报告
- 2025-2030中国装配式装修行业市场深度调研及竞争格局与投资前景研究报告
- 2025-2030中国行星式离心混合机行业市场发展趋势与前景展望战略研究报告
- 自来水公司个人总结报告
- 光伏工程施工安全方案
- 声乐课课件教学
- 保密法实施条例培训
- 泰山产业领军人才申报书
- GB/T 44395-2024激光雷达测风数据可靠性评价技术规范
- 2024年四川成都市成华区“蓉漂人才荟”事业单位招聘高层次人才历年高频500题难、易错点模拟试题附带答案详解
- 2024年浙江省金华市东阳市横店镇三校中考二模道德与法治试题(原卷版)
- 杭州市上城区政务服务中心招聘笔试真题2022
- 中华联合保险集团股份有限公司行测笔试题库2024
- 幼儿园中班社会活动《城市美容师》课件
- 地球的形状与内部结构30张省公开课一等奖新名师比赛一等奖课件
评论
0/150
提交评论