3函数的表示方法_第1页
3函数的表示方法_第2页
3函数的表示方法_第3页
3函数的表示方法_第4页
3函数的表示方法_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 函数的表示方法一、教学目标知识与技能1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.2.理解分段函数的定义,能用图像表示简单的分段函数过程与方法1.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.2.学会用描点法画一些简单函数的图象情感态度与价值观感受数学来源于生活,及在生活中的运用,理解数学的有用性二、课时:1课时三、课型:新授课四、教学重点难点教学重点:合理选用函数的表示方法表示函数;分段函数表示及图像教学难点:分段函数概念的理解五、教法:启发式、探究式六、教学用

2、具:书、粉笔、黑板(多媒体)七、教学过程导入新课思路1.语言是人与人之间进行沟通的工具。同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是 !那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.推进新

3、课新知探究提出问题我们在初中已经接触过函数三种表示法:解析法、图象法和列表法,同学们回忆一下,它们是怎样表示函数的?讨论结果:(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.应用示例思路1例1.某种笔记本的单价是5元,买x(x1,2

4、,3,4,5)个笔记本需要y元,试用三种表示法表示函数y=f(x).活动:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集1,2,3,4,5,用解析法可将函数y=f(x)表示为y=5x,x1,2,3,4,5.用列表法可将函数y=f(x)表示为笔记本数x12345钱数y510152025用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法. 解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出

5、任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域; 图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如气温变化图,股市走势图等; 列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等. 但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(nN*)每取一个值,那么他的身高

6、y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;图象法:根据实际情境来决定是否连线;列表法:选取的自变量要有代表性,应能反映定义域的特征例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟988791928895张城907688758680赵磊686573727582班平均分88

7、.278.385.480.375.782.6请你对这三位同学在高一学年度的数学学习情况做一个分析.活动:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水

8、平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,虽然函数的图像是离散的点,但是为了研究成绩的变化特点,我们将离散的点用虚线连接,这样有利于我们研究练习1将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y表示为x的函数,用数学的方法解决,然后再回到实际中去.解:

9、设矩形一边长为x,则另一边长为(a-2x),则面积y=(a-2x)x=-x2+ax.又得0 x,即定义域为(0,).由于y=-(x)2+a2a2, 如图1-2-2-4所示,结合函数的图象得值域为(0,a2.练习2向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是( )图1-2-2-5 图1-2-2-6练习3车管站在某个星期日保管的自行车和电动车共有3500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3

10、500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.活动:让学生审清题意读懂题.求解析式时不要忘记函数的定义域,要考虑自变量的取值必须使解析式有意义.然后再根据解析式列不等式求解.总的保管费=自行车保管费+电动车保管费.解:(1)由题意得y=0.3x+0.5(3500-x)=-0.2x+1750,xN*且0 x3500.(2)若电动车的辆次不小于25%,但不大于40%,则3500(1-40%)x3 500(1-25%),即2100 x2 625,画出函数y=-0.2x+1750(2 100 x2 625)的图象,可得函数y=-0.2x+17

11、50(2100 x2625)的值域是1225,1330,即收入在1225元至1330元之间.点评:本题主要考查函数的解析式和值域,以及应用函数知识解决实际问题的能力.解函数应用题的步骤是审清题意读懂题;恰当设未知数;列出函数解析式,并指明定义域;转化为函数问题,并解决函数问题;将数学问题的答案还原为实际答案.例3:画出函数的图像.分析:如果这个函数的解析式没有绝对值,就是一条直线,根据初中的知识同学们都会画,但是由于这个函数的解析式含有绝对值,我们能直接画出,要画出它的图像必须要先去掉绝对值,那怎么去掉绝对值?平方是去绝对值的一种常见方法,但是使用平方之后函数解析式变为了一样的不好做出它的图像

12、;这个题应该用用分类讨论的方法去掉绝对值。分类讨论是我们去掉绝对值的另外一种方法,而且这种方法在高中的学习中应用的非常广泛,大家一定要掌握。当时,当时,所以函数的解析式可以写成,它的图像是与我们常见的函数解析式是不是不一样啊?这是一个分段函数的解析式,所谓的分段函数指的是:对于自变量x的不同的取值范围,有着不同的对应法则(解析式),这样的函数叫做分段函数。注意:1.分段函数是一个函数,而不是几个函数2.分段函数的HYPERLINK /view/432831.htm定义域是各段函数定义域的并集,HYPERLINK /view/543477.htm值域也是各段函数值域的并集分段函数在生活中运用也是

13、很广泛,例如:个人所得税纳税额、出租车的计费方式等等例4成都出租车计价方式普通车(6-23点)8元起步,里程2公里,每公里1.9元;回空里程10公里,每公里2.85元写出出租车里程在5公里(含5公里)以内的打车费与里程之间的函数解析式。并画出函数图像解:设打车费为,里程为,由题意可知自变量的取值范围是,函数关系式为:练习4水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断:0点到3点只进水不出水;3点到4点不进水只出水;4点到6点不进水不出水;其中一定正确的

14、论断是( )A. B. C. D.分析:由图1229甲可看出,如果进水口与出水口同时打开,每个进水口的速度为出水口速度的一半,即v进水=v出水;由图丙可看出在0点到3点之间蓄水量以速度2匀速增加,所以在此时间段内一定是两个进水口均打开,出水口关闭,故正确.由图丙可看出在3点到4点之间蓄水量以速度1匀速减少,所以在此时间段内一定是一个进水口打开,出水口打开,故不正确.由图丙可看出在4点到6点之间蓄水量不变,所以在此时间段内一定是两个进水口打开,出水口打开,或者两个进水口关闭,出水口关闭,故不正确.综上所述论断仅有正确.练习5已知,若,则的值是( )A B或 C,或 D例6函数的值域是( )A B C D 练习6:若函数,则= 小结:1、解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;2、图象法的特点是:直观形象地表示自变量的变化,相应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论