版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸;台体的
2、体积公式).A2寸B3寸C4寸D5寸2设,则( )ABCD3中,为的中点,则( )ABCD24复数的模为( )AB1C2D5设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件6执行如图所示的程序框图,则输出的( )A2B3CD7已知m,n为异面直线,m平面,n平面,直线l满足l m,l n,则( )A且B且C与相交,且交线垂直于D与相交,且交线平行于8已知数列满足,则( )ABCD9已知集合,若,则( )A4B4C8D810已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD11已知集合,则=ABCD12已知直线y=k(x+1)(k
3、0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA| =( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13设f(x)etx(t0),过点P(t,0)且平行于y轴的直线与曲线C:yf(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1),则PRS的面积的最小值是_14设变量,满足约束条件,则目标函数的最小值是_.15四面体中,底面,则四面体的外接球的表面积为_16已知,则满足的的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,曲线在点处的切线方程为.()求,的值;()若,求证:对于
4、任意,.18(12分)如图,椭圆的左、右顶点分别为,上、下顶点分别为,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点(1)求椭圆的标准方程;(2)求四边形面积的取值范围19(12分)已知数列的前项和为,且满足()求数列的通项公式;()证明:20(12分)设(1)当时,求不等式的解集;(2)若,求的取值范围.21(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.22(10分)如图,
5、在四棱锥中底面是菱形,是边长为的正三角形,为线段的中点求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.2C【解析】试题分析:,故C正确考点:复合函数求值3D【解析】在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.
6、4D【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解【详解】解:,复数的模为故选:D【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题5C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.6B【解析】运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,
7、再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.7D【解析】试题分析:由平面,直线满足,且,所以,又平面,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论8C【解析】利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.9B【
8、解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.10D【解析】求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即: ,是的必要不充分条件,解得实数的取值范围为故选:【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解(2)求解参数的取值范围时, 一定要注意区间端点值的检验11C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运
9、算素养采取数轴法,利用数形结合的思想解题【详解】由题意得,则故选C【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分12C【解析】方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以方法二:抛物线的准
10、线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又 由得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】计算R(t,0),PRt(t),PRS的面积为S,导数S,由S0得t1,根据函数的单调性得到最值.【详解】PQy轴,P(t,0),Q(t,f(t)即Q(t,),又f(x)etx(t0)的导数f(x)tetx,过Q的切线斜率kt,设R(r,0),则k,rt,即R(t,0),PRt(t),又S(1,f(1)即S(1,et),PRS的面积为S,导数S,由S0得t1,当t1时,S0,当0t1时,
11、S0,t1为极小值点,也为最小值点,PRS的面积的最小值为故答案为:【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.147【解析】作出不等式组表示的平面区域,得到如图的ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值z最小值=F(2,1)=715【解析】由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求【详解】解:如图,在四面体中,底面,可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,则长方体的对角线长为,则三棱锥
12、的外接球的半径为1其表面积为故答案为:【点睛】本题考查多面体外接球表面积的求法,补形是关键,属于中档题16【解析】将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【详解】根据题意,f(x)x|x|,则f(x)为奇函数且在R上为增函数,则f(2x1)+f(x)0f(2x1)f(x)f(2x1)f(x)2x1x,解可得x,即x的取值范围为,+);故答案为:,+)【点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(),()见解析【解析】(
13、1)根据导数的运算法则,求出函数的导数,利用切线方程求出切线的斜率及切点,利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出,值;(2)首先将不等式转化为函数,即将不等式右边式子左移,得,构造函数并判断其符号,这里应注意的取值范围,从而证明不等式.【详解】解:(1)由于直线的斜率为,且过点,故即解得,.(2)由(1)知,所以.考虑函数,则.而,故当时,所以,即.【点睛】本题考查了利用导数求切线的斜率,利用函数的导数研究函数的单调性、和最值问题,以及不等式证明问题,考查了分析及解决问题的能力,其中,不等式问题中结合构造函数实现正确转换为最大值和最小值问题是关键.18(1)
14、;(2).【解析】(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)当直线斜率不存在时,易求坐标,从而得到所求面积;当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1),为等边三角形,椭圆的标准方程为(2)设四边形的面积为当直线的斜率不存在时,可得,当直线的斜率存在时,设直线的方程为,设,联立得:,面积令,则,令,则,在定义域内单调递减,综上所述:四边形面积的取值范围是【点睛】本题考查直线与椭圆的综合
15、应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.19(),()见解析【解析】(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等比数列求和公式,即可得到本题答案.【详解】()解:由题,得当时,得;当时,整理,得数列是以1为首项,2为公比的等比数列,;()证明:由()知,故故得证【点睛】本题主要考查根据的关系式求通项公式以及利用等比数列的前n项和公式求和并证明不等式,考查学生的运算求解能力和推理证明能力.20(1)(2)【解析】(1)通过讨论的范围,得到关于的不等式组,解出取并
16、集即可.(2)去绝对值将函数写成分段函数形式讨论分段函数的单调性由恒成立求得结果.【详解】解:(1)当时,即或或解之得或,即不等式的解集为.(2)由题意得:当时为减函数,显然恒成立.当时,为增函数,当时,为减函数,综上所述:使恒成立的的取值范围为.【点睛】本题考查了解绝对值不等式问题,考查不等式恒成立问题中求解参数问题,考查分类讨论思想,转化思想,属于中档题.21(1)(2)【解析】(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入,得,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省枣庄市滕州市2024-2025学年七年级上学期1月期末考试道德与法治试卷(含答案)
- 江苏省宿迁市2024-2025学年高三1月第一次调研测试化学试题(含答案)
- 09年1月中英合作财务管理真题及答案
- 福建省南平市剑津中学2020-2021学年高三语文模拟试题含解析
- 2025年度保密协议模板:涉密数据存储服务合同3篇
- 2024网络游戏内容安全与防沉迷系统咨询合同
- 2024版单位汽车租赁合同范本
- 2024软件著作权登记与反侵权调查专业服务合同3篇
- 2025年度农产品加工合作合同3篇
- 2024订车协议范本
- SVG无功补偿培训
- 新生儿听力筛查技术规范卫生部2010年版
- 大猫英语分级阅读 六级1 Arthur's Fantastic Party课件
- SCA自动涂胶系统培训讲义
- LEC法取值标准对照表
- 铸造工厂设备管理(共21页)
- 华中数控车床编程及操作
- 农产品收购台账(登记经营单位及个体经营者投售的农产品
- 分红保险精算规定
- 名词性从句引导词表格
- 3、起重工、焊工、电工安全技术交底
评论
0/150
提交评论