版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知平面向量满足与的夹角为,且,则实数的值为( )ABCD2执行如图所示的程序框图后,输出的值
2、为5,则的取值范围是( ). ABCD3已知函数,若函数的所有零点依次记为,且,则( )ABCD4己知全集为实数集R,集合A=x|x2 +2x-80,B=x|log2x0,得x-4或x2,A=x|x2 +2x-80 x| x-4或x2,由log2x1,x0,得0 x2,B=x|log2x0=y|y1,N=x|y=lg(2x-x2)=x|2x-x20=x|x2-2x0=x|0 x2,MN=(1,2)故选B8A【解析】根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【详解】由题知,则.故选:A.【点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题.9B【
3、解析】根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为: ,函数为偶函数,排除 ,排除 故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.10B【解析】由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.11D【解析】由题可知,可转化为曲线与有两个公共点,可转化为方
4、程有两解,构造函数,利用导数研究函数单调性,分析即得解【详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,故时取得极大值,也即为最大值,当时,;当时,所以满足条件故选:D【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.12C【解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1考点:程序框图二、填空题:本题共4小题,每小题5分,共20分。13(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值14【解析】由已知得出函
5、数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,得时,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解,关键得出函数的奇偶性,单调性,属于中档题.154【解析】由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【详解】观察式子可知,故答案为:4.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.16【解析】由题意可得三棱锥的三条侧棱两
6、两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求出球的体积.【详解】解:因为,为正三角形,所以,因为,所以三棱锥的三条侧棱两两垂直,所以它的外接球就是棱长为的正方体的外接球,因为正方体的对角线长为,所以其外接球的半径为,所以球的体积为故答案为:【点睛】此题考查球的体积,几何体的外接球,考查空间想象能力,计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直
7、角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,而、分别是、的中点, 故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线, 故面面. (2)由(1)可知,两两垂直,故建系如图所示,则,, 设是平面PAB的法向量,,令,则, 直线NE与平面所成角的余弦值为.【点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.18(1),.(2)见解析【解析】(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2
8、)由(1)知,即,由,得,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19(1)证明见解析;(2)证明见解析;【解析】(1)推导出,由是的中点,能证明是有中点(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面【详解】证明:(1)在三棱锥中,平面,平面平面,平面,在中,是的中点,是有中点(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,平面,平面,平面平面【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,
9、属于中档题20每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.21(1)(2)【解析】(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解. (2)由(1)求出,再利用裂项求和法即可求解.【详解】(1),且,依次成等比数列,即:,;(2),.【点睛】本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.22(1)(2)2 期望值为X900600300100P【解析】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D 级的概率为,设10件手工艺品中不能外销的手工艺品可能是件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大型运动会安防系统合同
- 2024年度大数据分析服务合同标的明细
- 2024年专用:租赁合同保证金条款汇编
- 2024年度居民住宅铝合金门窗安装工程合同
- 2024年废旧物资回收协议
- 2024工程合规审查中的黑白合同问题探讨
- 04版智能硬件研发与制造分包合同
- 2024年国际货运代理及仓储物流合作合同
- 2024年度5G基站建设与运营合作协议
- 2024年一年级数学老师家长会
- 外贸公司组织架构、岗位职责
- 机械设计课程设计ZDD1-B说明书
- 人教版-高一至高三全部英语课文朗读与听力MP3链接
- 第4课 我来画棵“家庭树”第一课时 ppt课件
- ARMA算法整理
- 岛电SR中文说明书
- 地下水八大离子-阴阳离子平衡计算公式
- 部分轮毂的基本知识
- 小学数学六年级“24点”试题及答案
- 钻孔灌注桩验孔记录表
- 法语书信格式(正式版)
评论
0/150
提交评论