明渠流动课件资料_第1页
明渠流动课件资料_第2页
明渠流动课件资料_第3页
明渠流动课件资料_第4页
明渠流动课件资料_第5页
已阅读5页,还剩295页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、水力学第6章 明渠流动 6.1 概述 6.2 明渠均匀流 6.3 无压圆管均匀流 6.4 明渠流动状态 6.5 跌水与水跃 6.6 棱柱形渠道中渐变流水面曲线的分析 6.7 棱柱形渠道中渐变流水面曲线的计算【教学基本要求】【学习重点】【教学基本要求】1、了解明槽水流的分类和特征,了解棱柱体渠道的概念,掌握明槽底坡的概念和梯形断面明渠的几何特征和水力要素。2、了解明槽均匀流的特点和形成条件,熟练掌握明槽均匀流公式,并能应用它来进行明渠均匀流水力计算。3、理解水力最佳断面和允许流速的概念,掌握水力最佳断面的条件和允许流速的确定方法,学会正确选择明渠的糙率n值。4、掌握明槽均匀流水力设计的类型和计算

2、方法,能进行过流能力和正常水深的计算,能设计渠道的断面尺寸。返回【教学基本要求】5、掌握明渠水流三种流态的运动特征和判别明渠水流流态的方法,理解佛汝德数Fr的物理意义。 6、理解断面比能、临界水深、临界底坡的概念和特性,掌握矩形断面明渠临界水深hk的计算公式和其它形状断面临界水深的计算方法。7、掌握棱柱体渠道水面曲线的分类、分区和变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。8、能进行水面线定量计算。返回【学习重点】1. 明渠均匀流水力计算;2. 明渠水流三种流态的判别;3. 明渠恒定非均匀渐变流水面曲线分析和计算,这部分也是本章的难点;4. 水跃的基本特性。返回 明 渠 一种

3、人工修建、或自然形成的渠 明渠流 水流通过明渠时,有自由面(液面为大气压强)。这种水流称明渠水流,或无压流。 6.1 概述明渠恒定流 明渠流中的水力要素(时均值)均不随时间变化,称明渠恒定流,否则称明渠非恒定流。 明渠均匀流 明渠流中,流线是一簇平行直线,水深、断面平均流速、流量、糙率等水力要素沿程不变。 明渠和管流比较 管流 恒定流 非恒定流 均匀流 非均匀流 非均匀流 均匀流 明渠 恒定流 非恒定流 均匀流 非均匀流 非均匀流 无 明渠流与有压流区别 自由液面 明渠流:有自由面, 随时空变化,呈现各种水面形态管 流:无自由液面 非恒定均匀流 明渠流:非恒定流必是非均匀流 管 流:非恒定管流

4、可以是均匀流 明渠断面形状、尺寸、底坡对水流运动有重要影响。因此,要了解明渠水流运动的规律,首先必须了解明渠类型及其水力要素等。 6.1.1 明渠底坡 沿水流方向单位渠道长度,对应的渠底高程降落值,其表示渠底纵向倾斜程度,以符号i 表示。式中: : 渠底与水平面夹角 ds:两断面的间距 dz:两断面的渠底高程差 dzds明渠底坡有三种类型 正坡 i 0 渠底高程沿流程降低 平坡 i = 0 渠底高程沿程不变负坡 i 0 渠底高程沿流程降低 平坡 i = 0 渠底高程沿程不变负坡 i 0 正坡 i 0 渠底高程沿流程降低 平坡 i = 0 渠底高程沿程不变负坡 i 0 渠底高程沿流程降低 平坡

5、i = 0 渠底高程沿程不变负坡 i 0 渠底高程沿流程增加 i 0 渠底高程沿流程降低 平坡 i = 0 渠底高程沿程不变负坡 i 0 i = 0 i 1, m 1,是深窄形断面,需深挖高填,造成施工不便、维护管理困难;水深变化大,给通航和灌溉带来不便,经济上反而不利。 因此,限制了水力最佳断面在实际中应用6.2.4.2 允许流速保证渠道正常运行的允许流速上限和下限值 6.2.4.2 允许流速不冲流速 v 渠道冲刷的临界断面平均流速,取决定于渠壁材料的物理性质和水深,可查阅有关水利设计手册。 6.2.4.2 允许流速 不淤流速v 渠道中悬沙淤积的临界流速,取决于水流条件和挟沙的特性以及水中含

6、沙量大小,可根据经验公式确定。 渠道中杂草可滋生的临界流速一般约 0.5m/s。 渠水冬季结冰的临界流速(北方地区)约 0.6m/s 电站引水渠、航运渠道中的流速还应满足技术经济要求及管理运动要求,参照有关规范选定。 渠道中流速6.2.4.2 允许流速 明渠断面周界上糙率不同的明渠均匀流一些渠道,断面周界各段糙率不同例如,边坡为混凝土护面,底部为浆砌卵石的渠道n1 ,1n2 ,2例如,边坡一侧由山石开凿而成,另侧由浆砌石筑成。n1 ,1n2 ,2天然河道主槽与河滩糙率不同主 槽滩 地水力计算引入综合糙率nr,其他计算同前加权平均法:当 时,按加权平均法估算 式中,w1、w2、wk为相应糙率n1

7、、n2、nk 湿周 均方根平均法式中,w1、w2、wk为相应糙率n1、n2、nk 湿周 复式断面明渠均匀流的水力计算 当渠道流量变化大时,断面形状采用复式断面 糟率沿湿周可能不变,也可能变化,视具体情况而定计算流量实际流量hQ计算流量 复式断面渠道,不能用综合糙率来计算流量原因:水深变化引起湿周变化可能是不连续的例如,水位刚刚漫上浅滩(第二个台阶)时,湿周突然增大,过水面积变化小,计算流量会突然减小,小于实际流量。 计算流量实际流量hQ计算流量 水力计算: 把断面按水深划为几部分,分别计算流速、流量 1 h1 2 3h2 h3 例如,用垂线把断面划分成三部分 注意:计算各部分湿周时,不要把两垂

8、直分界线计入1 h1 2 3h2 h3 6.4 明渠流动状态6.4.1 断面单位能量(断面比能) 上图为一明渠非均匀流,以渠底为基准面,过水断 面单位液重的总能量为 图 断面单位能量 z0h coshzz000vQ断面比能定义 图 断面单位能量 z0h coshzz000vQ当底坡(6)较小的渠道,cos1,则式中,E s 为断面比能(断面单位能量)比较 E和Es两者相差一个渠底高程,Es与渠底高程无关 流量一定时,Es 是断面形状、尺寸的函数 当流量和断面形状一定时,Es 是水深函数 例如,均匀流 当Q、渠道断面形状一定时,分析E s = f(h)比能曲线通常纵坐标为h;横坐标为Es 断面比

9、能曲线 Es h根据比 能定义 Esh渐近线1: 横坐标为渐近线渐近线2: 坐标轴成45直线 (水面宽) 当 , 流态为临界流 dh BdA式中,Ak为临界流时的过水面积 Bk为水面宽度 hk为临界水深临界流方程 或 当 流态为临界流 Es minhhkEsEs minhhkEs缓流hEs min h k Es 急流缓流急流hEs minhkEs临界流缓流急流hEs minhkEs临界流3 断面比能的变化规律h1h2Es2Es1缓流急流hEs minhkEs临界流3 断面比能的变化规律h2h1Es1Es2缓流急流hEs minhkEs临界流3 断面比能的变化规律h1h2Es2Es1hhkEs3

10、 断面比能的变化规律h1h2Es2Es1hhkEs3 断面比能的变化规律h2h1Es1Es2 临界流 方程 hk与渠道断面形状、尺寸、流量有关,与n、i 无关注意6.4.2 临界水深及其计算 矩形断面明渠 式中,q = Q/Bk 称渠道单宽流量,单位m3/sm 临界流条件下,矩形明渠水深、流速以及断面比能间关系任意断面的明渠 为含hk 的高次隐函数式,不能直接求解hk 求解方法试算法试算图解法试算法重新假定试算图解法hhkQ2gA3B解 由已知条件 计算过程详见下表 1.00 1.200 13.6 14.2 2839.2 208.8 2.00 1.250 13.8 14.8 3270.6 23

11、7.9 3.00 1.270 13.8 15.1 3455.3 250.2 4.00 1.350 14.1 16.2 4278.2 304.5 5.00 1.400 14.2 16.9 4861.2 342.3 6.00 1.450 14.4 17.7 5501.9 383.4 次序hBAA3A3/B例 梯形断面渠道 m =1.5,b =10m,Q = 50m3/s,hk? 1.00 1.200 13.6 14.2 2839.2 208.8 2.00 1.250 13.8 14.8 3270.6 237.9 3.00 1.270 13.8 15.1 3455.3 250.2 4.00 1.35

12、0 14.1 16.2 4278.2 304.5 5.00 1.400 14.2 16.9 4861.2 342.3 6.00 1.450 14.4 17.7 5501.9 383.4 次序hBAA3A3/B6.4.3 临界底坡 给定Q、n、渠道断面形状尺寸,则 h0 f(i)若i=ik ,有h0hk,称 ik为临界底坡 临界底坡定义 临界底坡是一个假想底坡,与渠道实际底坡无关,仅与渠道流量Q、糙率n、断面形状尺寸有关 临界底坡的水力计算 : 二、 满足 从中导出 式中,Ck、Ak、Rk、Kk为对应于临界水深的谢才 系数、过水面积、水力半径和流量模数 临界底坡的水力计算 : 满足 从中导出 对

13、于宽浅渠道 kBk,则 缓坡、陡坡和临界底坡 把实际底坡i 和临界坡ik相比较,有 i ik 陡坡 i = ik 临界坡 陡坡缓坡临界坡 陡坡缓坡临界坡 缓坡、陡坡和临界底坡 3 i ik 陡坡 i=ik 临界坡如果发生均匀流,则 缓坡(i hk,均匀缓流陡坡(i ik),h0 ik 图 陡坡上的均匀流 h0hki ik 图 缓坡上的均匀流 i ik 图 临界坡上的均匀流 h0hk 缓 流 底坡平坦,水流缓慢河流中有些水面宽阔的地方当水流遇有障碍时(如大石头)上游水面普遍抬高6.4.4 明渠流动的三种流态急流 在河流有些水面狭窄的地方底坡陡峻,且水流湍急当水流遇到石块便一跃而过石块顶上 掀起浪

14、花而上游水面未受影响vwvw将一块石子投入静水中水面以投石点为中心产生一系列同心圆其以一定速度离开中心向四周扩散6.4.5微幅扰动波与明渠流态的物理意义vw- v vw+ v 将石子投入等速运动的水流中当水流流速小于波速(v vw)时微波只向投石点下游传播对上游的流动没有影响 式中,v 为水流速度,vw 为微波(扰动波)波速缓 流 v vw 明渠流态 判断明渠水流流态必须已知水流速度、微波(扰动)波速;如何考虑微波(扰动)波速? 一平底矩形断面水渠,水体静止,水深为h,水中有一个直立的平板。hvwhh 用直立平板向左拨动一下,板左边水面激起一微小波动,波高h,波以速度vw从右向左传播观察微波传

15、播: 波形所到之处将带动水流运动,流速随时间变化,是非恒定流,但可化为恒定流。 vwhh选动坐标随波峰运动,假想随波前进来观察渠中水流12hv1 = vwh12v2相对于动坐标系 波静止 渠中原静止水体以波速vw从左向右流动 整个水体等速度向右运动,水流为恒定流,水深沿程变化,是非均匀流 12hv1 = vwh12v2断面2:波峰处断面1:未受波影响 忽略能量损失,由连续方程和能量方程 得能量方程 连续方程 式中,B为水面宽 12hv1 = vwh12v2由此得 对于波高 h h 的波小波式中: 断面平均水深,A为过水断面面积,B为水面宽度 12hv1 = vwh12v2逆水波 (微波传播方向

16、和水流方向相反) 式中, 逆水波传播波速 顺水波 (微波传播方向和水流方向一致) 式中, 顺水波传播波速 佛劳德数:流速与波速之比,以Fr 表示 物理意义能量意义 水流平均动能和势能之比的两倍开方 力学意义 水流惯性力与重力之比流态判断 缓 流: v vw Fr vw Fr 1 Fr 是流态判别的准数6.5.1跌水 定义:缓坡中的水流因下游渠底变陡或渠身断面突然扩大,水面突然跌落。这种由缓流向急流过渡的水面突然跌落的局部水力现象称为水跌。 如图,缓坡渠道后接一陡槽,水流经过连接断面时的水深可以认为是临界水深,水跌发生流态转换时,在转换处通过临界水深,但水面是连接面,不同于水跃表面漩滚形成的不连

17、续面。水流在跌坎上自由跌落的水力现象,水流是以水舌形式通过跌坎下跌,跌坎上游是缓流,而坎后水舌是急流,跌坎前后发生流态转变,跌坎处是 临界水深。6.5 跌水与水跃6.5.2 水跃 定义:明渠水流从急流状态过渡到缓流状态时水面突然跃起的局部水力现象。 如下图,在陡槽下游,下泻水流的大部分势能转变为动能,流速大而水深浅,呈现出急流状态。如果下游的水流条件保持在同一流量下为缓流状态,那么水流将经过水跃而使上游的急流与下流的缓流连接。从侧面观察水跃分成上下两部分,上部分是急流冲入缓流时所激起的表面水滚,翻腾滚动饱渗空气,很不透明;下部为主流,主流与表面水滚间无明显的分界。两者不断进行质量交换。返回 将

18、表面水滚的首端称为跃首(跃前),尾端称为跃尾(跃后),首尾间距离称为跃长,高差为跃高,跃首与跃尾的水深称为共轭水深。 水跃是明渠非均匀急变流的重要现象,增加了上、下游水流衔接的复杂性,还引起大量的能量损失,可以利用这一特点,进行下泄水流的消能,以减免对河床的冲刷。8.3.1 水跃现象水流从急流向缓流过渡时,水面突然跃起的现象闸、坝及陡槽等泄水建筑物下游常有水跃产生KK水跃流动特征水跃下部:主流区,流速由快变慢,急剧扩散水跃中水体掺入大量空气水跃上部:水面剧烈回旋的表面旋滚区水跃流动特征水跃下部:主流区,流速由快变慢,急剧扩散水跃中水体掺入大量空气水跃上部:水面剧烈回旋的表面旋滚区 表面旋滚区与

19、下部主流区附近 大量质量、动量交换,紊动掺混极为强烈 界面上形成横向流速梯度很大的剪切层水跃流动特征跃前断面:表面旋滚起始断面:1-1 跃前水深: 跃前断面水深 h1 跃后断面:表面旋滚末端断面:2-2 跃后水深: 跃后断面的水深 h2 水跃长度 :跃前断面和跃后断面间的距离 Lj 水跃高度: 跃前和跃后断面的水深之差 a Ljh2ah1221112h12i = 0KKhkh2aLj1跃前断面:表面旋滚起始断面:1-1 跃前水深: 跃前断面水深 h1 跃后断面:表面旋滚末端断面:2-2 跃后水深: 跃后断面的水深 h2 水跃长度 :跃前断面和跃后断面间的距离 Lj 水跃高度: 跃前和跃后断面的

20、水深之差 a 水跃流动特征流速分布不均匀用 途 水跃区中流速分布急剧变化,水体剧烈旋转、掺混和强烈紊动,使得水流内部摩擦加剧,因而水流的机械能大量损失。 实验表明,水跃区中单位机械能损失可达 20%80%。 水利工程中常用水跃消能 保护河床 免受急流冲刷、淘刷6.5.2.2 棱柱体水平明渠的水跃方程 水跃方程的推导 由于水跃中能量损失很大,不可忽略,而又未知,故不能应用能量方程求解,必须应用动量方程推导跃前水深与跃后水深之间的关系。 h12i = 0KKhkh2aLj112假设水跃区壁面摩擦阻力忽略 跃前、跃后断面为渐变流 静水压力分布规律 跃前、跃后断面的动量修正系数均为1 h12i = 0

21、KKhkh2aLj112取跃前和跃后断面之间水体为控制体,作受力图进行分析KKh2h1a1P1P2Ffv1v2i = 02Ljx12考虑控制体沿水流方向x的动量方程KKh2h1a1P1P2Ffv1v2i = 02Ljx12KKh2h1a1P1P2Ffv1v2i = 02Ljx12KKh2h1a1P1P2Ffv1v2i = 02Ljx12式中,A过水断面的面积; hc 相应于A上形心点水深 ;1 ,2 对应跃前和跃后断面消去,并将 和 代入整理,则 棱柱体明渠水平明渠的水跃方程 水跃函数:当流量Q、渠道断面形状尺寸一定时,J 为水跃函数 水跃方程可化为 棱柱体水平明渠中,跃前和跃后水深不相等,但

22、其水跃函数值相等,h1 h2 互称为共轭水深 水跃函数的性质 h1 h2当断面形状尺寸、流量Q一定时,绘h J(h)曲线 J(h) h 当h0, 当趋近于时, 也趋近于 当h0,,J(h)有J(h)min hBoooohcA:临界流方程 J(h) h J min h kJ(h)h1J(h2) 缓流hh2J(h)minhkJ(h1) 急流J(h1)= J(h2)a图 水跃函数的性质 共轭水深计算的一般方法 试算图解法原理 J(h)h1J (h2) 缓流hh2J(h)minhkJ (h1) 急流J(h1)= J(h2)a问题:已知流量、断面形状尺寸、h1, , ,例:一水跃产生在梯形渠道中。已知流

23、量:Q = 6.0m3/s,b2.0m, 边坡系数m = 1.0,h1 = 0.4m,求h2 ?9.72 9.35 0.94 0.37 6.60 9.89 6.00 2.00 1.00 2.30 8.79 8.39 0.91 0.40 6.40 9.24 6.00 2.00 1.00 2.20 7.13 6.67 0.83 0.46 6.00 8.00 6.00 2.00 1.00 2.00 5.72 5.18 0.76 0.54 5.60 6.84 6.00 2.00 1.00 1.80 4.01 3.30 0.64 0.71 4.97 5.18 6.00 2.00 1.00 1.49 3.

24、65 2.87 0.60 0.77 4.80 4.76 6.00 2.00 1.00 1.40 2.97 2.02 0.53 0.96 4.40 3.84 6.00 2.00 1.00 1.20 2.56 1.33 0.44 1.22 4.00 3.00 6.00 2.00 1.00 1.00 2.45 0.81 0.36 1.64 3.60 2.24 6.00 2.00 1.00 0.80 3.23 0.29 0.23 2.94 3.00 1.25 6.00 2.00 1.00 0.50 4.01 0.18 0.19 3.83 2.80 0.96 6.00 2.00 1.00 0.40 5.

25、42 0.10 0.14 5.32 2.60 0.69 6.00 2.00 1.00 0.30 8.39 0.04 0.10 8.35 2.40 0.44 6.00 2.00 1.00 0.20 17.5 0.01 0.05 17.5 2.20 0.21 6.00 2.00 1.00 0.10 J(h)A*hchcQ2/gABAQbmh表1 水跃跃后水深的试算图解计算过程表 hmbQABQ2/gAhcA*hcJ(h)0.10 1.00 2.00 6.00 0.21 2.20 17.5 0.05 0.01 17.5 0.20 1.00 2.00 6.00 0.44 2.40 8.35 0.10

26、0.04 8.39 0.30 1.00 2.00 6.00 0.69 2.60 5.32 0.14 0.10 5.42 0.40 1.00 2.00 6.00 0.96 2.80 3.83 0.19 0.18 4.01 0.50 1.00 2.00 6.00 1.25 3.00 2.94 0.23 0.29 3.23 0.80 1.00 2.00 6.00 2.24 3.60 1.64 0.36 0.81 2.45 1.00 1.00 2.00 6.00 3.00 4.00 1.22 0.44 1.33 2.56 1.20 1.00 2.00 6.00 3.84 4.40 0.96 0.53

27、2.02 2.97 1.40 1.00 2.00 6.00 4.76 4.80 0.77 0.60 2.87 3.65 1.49 1.00 2.00 6.00 5.18 4.97 0.71 0.64 3.30 4.01 1.80 1.00 2.00 6.00 6.84 5.60 0.54 0.76 5.18 5.72 2.00 1.00 2.00 6.00 8.00 6.00 0.46 0.83 6.67 7.13 2.20 1.00 2.00 6.00 9.24 6.40 0.40 0.91 8.39 8.79 2.30 1.00 2.00 6.00 9.89 6.60 0.37 0.94

28、9.35 9.72 已知跃前水深h1,J(h1) 求跃后水深h2 ?hmbQABQ2/gAhcA*hcJ(h)0.10 1.00 2.00 6.00 0.21 2.20 17.5 0.05 0.01 17.5 0.20 1.00 2.00 6.00 0.44 2.40 8.35 0.10 0.04 8.39 0.30 1.00 2.00 6.00 0.69 2.60 5.32 0.14 0.10 5.42 0.40 1.00 2.00 6.00 0.96 2.80 3.83 0.19 0.18 4.01 0.50 1.00 2.00 6.00 1.25 3.00 2.94 0.23 0.29

29、3.23 0.80 1.00 2.00 6.00 2.24 3.60 1.64 0.36 0.81 2.45 1.00 1.00 2.00 6.00 3.00 4.00 1.22 0.44 1.33 2.56 1.20 1.00 2.00 6.00 3.84 4.40 0.96 0.53 2.02 2.97 1.40 1.00 2.00 6.00 4.76 4.80 0.77 0.60 2.87 3.65 1.49 1.00 2.00 6.00 5.18 4.97 0.71 0.64 3.30 4.01 1.80 1.00 2.00 6.00 6.84 5.60 0.54 0.76 5.18

30、5.72 2.00 1.00 2.00 6.00 8.00 6.00 0.46 0.83 6.67 7.13 2.20 1.00 2.00 6.00 9.24 6.40 0.40 0.91 8.39 8.79 2.30 1.00 2.00 6.00 9.89 6.60 0.37 0.94 9.35 9.72 跃后水深h2 , J(h2)hmbQABQ2/gAhcA*hcJ(h)0.10 1.00 2.00 6.00 0.21 2.20 17.5 0.05 0.01 17.5 0.20 1.00 2.00 6.00 0.44 2.40 8.35 0.10 0.04 8.39 0.30 1.00

31、2.00 6.00 0.69 2.60 5.32 0.14 0.10 5.42 0.40 1.00 2.00 6.00 0.96 2.80 3.83 0.19 0.18 4.01 0.50 1.00 2.00 6.00 1.25 3.00 2.94 0.23 0.29 3.23 0.80 1.00 2.00 6.00 2.24 3.60 1.64 0.36 0.81 2.45 1.00 1.00 2.00 6.00 3.00 4.00 1.22 0.44 1.33 2.56 1.20 1.00 2.00 6.00 3.84 4.40 0.96 0.53 2.02 2.97 1.40 1.00

32、2.00 6.00 4.76 4.80 0.77 0.60 2.87 3.65 1.49 1.00 2.00 6.00 5.18 4.97 0.71 0.64 3.30 4.01 1.80 1.00 2.00 6.00 6.84 5.60 0.54 0.76 5.18 5.72 2.00 1.00 2.00 6.00 8.00 6.00 0.46 0.83 6.67 7.13 2.20 1.00 2.00 6.00 9.24 6.40 0.40 0.91 8.39 8.79 2.30 1.00 2.00 6.00 9.89 6.60 0.37 0.94 9.35 9.72 跃前水深的水跃函数图

33、 跃后水深的求解过程 例 当棱柱体水平明渠的流量、断面形状和尺寸以及跃前水深一定时,试问水跃段的低槛对跃后水深有何影响? RhkKKh1aLj112P1P22R/J(h)=J(h1)= J(h2)J(h2)=J(h2)- R/J(h)hh2h2RhkKKh1aLj112P1P22R/J(h)=J(h1)= J(h2)J(h2)=J(h2)- R/J(h)hh2h2 解 对图中水跃段应用动量方程,采用推导水跃方程的 同样假定,则有低槛时的水跃方程为 有低槛时的水跃方程 式中,A1, A2 :有低槛时的水跃前、后断面的面积; h c1 ,h c2:有低槛时的水跃前、后断面形心点距水面距离 R:低槛

34、的反击力 J(H):有低槛时的水跃方程 无低槛时的水跃方程 RhkKKh1aLj112P1P22R/J(h)=J(h1)= J(h2)J(h2)=J(h2)- R/J(h)hh2h2即:有低槛时的跃后水深较无低槛时的跃后水深为小 实际上,只要在水跃段给水流以反击力,或来自低槛,或来自其他设施,一般均可减少跃后水深。例如,利用射流给水流以反冲力也可降低跃后水深。 h2h2 矩形断面渠道的共轭水深 矩形断面设 , , 代入到水跃方程中,则 或或式中,为共轭水深比。 6.4.4 水跃长度 水跃段中,水流紊动强烈,底部流速较大。 因此,除非河、渠底为坚固岩石,一般需设置护坦保护。跃后段也需铺设海漫以免

35、河床底部冲刷。由于护坦和海漫长度均与跃长有关,故其确定是十分重要的。水跃长度 跃前断面和跃后断面间的水平距离Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线 由于水跃运动非常复杂,迄今还没有一个较完善的理论跃长公式,仍以经验公式为主。Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线 经验公式很多,所得结果不一致 主要原因:跃后断面选择标准不同 跃后位置非绝对固定 水面波动较大 矩形明渠的跃长公式 吴持恭公式 欧勒佛托斯基公式 陈椿庭公式梯形渠道的跃长公式为跃前和跃

36、后断面的水面宽度 水跃消能计算 E = 水跃段能量损失 Ej + 跃后段水头损失计算 Ejj 水跃段水头损失 Ej 跃前断面 1-1 单位能量 跃后断面 2-2 单位能量 Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线 注意 a1=1 但 a2 1Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线矩形断面 代入, 则 跃后段水头损失计算 跃后段能量损失Ejj 减 断面 2-2 单位能量 断面 3-3 单位能量 Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线 跃后段水头损失计算 跃后段能量损失Ejj 减去 断面

37、 2-2 单位能量 断面 3-3 单位能量 Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线矩形断面 代入, 则 水跃总水头损失 E 跃前断面 1-1 单位能量 减 断面 3-3 单位能量 Ljh31h123h2EjEjjv122gv222gLjjv322g总水头线水跃总水头损失矩形断面 图 矩形断面渠道水跃段消能率 水跃水头损失分配 Fr1较小时,水跃段水头损失较跃后段小,水跃消能效果不佳。 例如,Fr1 2.3,Ej/E 50% 图 矩形断面渠道水跃段消能率 从上图可见 Fr1 ,Ej/E 迅速 例如, Fr1 = 4.5,Ej/E 达到 90 占总水头损失90

38、% 图 矩形断面渠道水跃段消能率 其他断面渠道的水跃,由于缺乏2资料,一般把水跃总水头损失E 近似作为水跃段的能量损失。 图 矩形断面渠道水跃段消能率 水跃的消能率 水跃能量损失与跃前断面单位能量之比称水跃消能率,即平底矩形断面渠道 图 矩形渠道水跃消能效率 当1Fr11.7 为波状水跃,水跃消能率很小 图 矩形渠道水跃消能效率 当1.7Fr12.5 为弱水跃,水跃消能率小 图 矩形渠道水跃消能效率 当2.5 Fr14.5 为摆动水跃, Kj 20%45 % 图 矩形渠道水跃消能效率 当4.5 Fr19 为稳定水跃, Kj = 45 %70 %当Fr1 9.0 为强水跃,消能系数 Kj= 85

39、 % 消能效率最高,但跃后水面波动也大 图 矩形渠道水跃消能效率 水利工程中的水跃时,应控制 4.5 Fr1 9.06.6.1 明渠恒定非均匀渐变流基本方程 6.6 非均匀渐变流iJJzvv在底坡为i 的明渠渐变流中,沿水流方向任取一微分段dsz +dzhh+dhv+dvdsz0z0 +dzzv1122 dz + z0 v+dv z+dz h+dh 下游断面 z0 v z h 上游断面 河底高程 断面平均流速 水位 水深 z +dzhh+dhv+dvdsz0z0 +dzzv1122考虑两个断面的能量方程,则 z +dzhh+dhv+dvdsz0z0 +dzzv1122z +dzhh+dhv+d

40、vdsz0z0 +dzzv1122式中, 采用均匀流公式计算 ,但用两个断面的平均值计算其中的水力要素明渠恒定流非均匀流基本方程 6.6.2 水深沿流程变化的微分方程一般情况下: ,所以 式中 式中, 原因 (水面宽度,注s 不变) Bdhh一般情况下: ,所以 式中, 对于棱柱体渠道 对于非棱柱体渠道 式中, 从中导出 非棱柱体渠道棱柱体渠道6.6.3 水位沿流程变化的微分方程 z +dzhh+dhv+dvdsz0z0 +dzzv1122将 代入非均匀流渐变流的水位沿流程变化微分方程 棱柱形渠道水深变化的微分方程为 水面线沿流程变化规律与渠底坡、水流流态有关。因此,先对水面曲线变化区域进行分

41、析水面曲线可能发生的区域 明渠非均匀渐变流有减速、加速流,可产生降水、壅水及水跃。五种底坡、正常水深线、临界水深线将水面线可发生区域分为12个区,对应水面线有12种形式 水面曲线可能发生的区域 各区编号 区号 1: hk 或h0 以上2: hk 与h0 之间3: hk 或h0 以下 坡号 M: 缓坡S: 陡坡C: 临界坡H: 平坡A: 逆坡 hkh0i ikS1S2S3hkh0KKNNhki = 0H3H1 图 平坡渠道KKhkh0i = ikC1C3NKNK 图 临界坡上的均匀流 K ,NK ,Nhki 0 图 逆坡渠道A2A3KK水面曲线形式 水面线变化 沿流程减少 降水曲线(曲线凹凸)均

42、匀流沿流程增加 壅水曲线(曲线凹凸) 边界条件和结合条件两坡衔接:临界水深起始水面:均匀流、临界水深、水库水面,收缩水深终止水面:均匀流、临界水深、水库水面流 态 急流、缓流和临界流 流态过渡 缓流 急流 跌水 急流 缓流 水跃 坡度变化 缓坡、陡坡和临界坡、平坡、逆坡 渠道形式 无限长、有限长度 水面曲线的编号 区号: 1 2 3 坡号:M, S , C , H , A 6.6.1 缓坡渠道中的水面线 棱柱形渠道水深变化微分方程 M 1 M2 M3i ik水平 N N K K 1M 1 M2 M3i ik水平 N K M 1 i ikKNNK2M 1 M2 M3i ik水平 N N K K

43、M 1 M2 M3i ik水平 N N K K hki ikM2N N K K 3N M 1 M2 M3i ik水平 N N K K N M 1 M2 M3i ik水平 N N K K M3 i ik N K N K M3 i ik N N K K 水跃 控制水深 壅水 急流M33 临界水深 降水 M22 水平线 壅水 缓流 M11 缓 坡 下游趋向 上游趋向 水面形态 流态 名称 水深范围 区域 底 坡表 缓坡水面线汇总 N M 1 M2 M3i ik S1S2N N K K M1S2i 2 ik i 1 ik KNKNKNS3 i ik K N 6.6.3 临界坡渠道中的水面线 C1 C3

44、 i = ik NKNK表 临界坡水面线类型及特性控制水深 壅水 急流C33 水平线 壅水 缓流C11临界坡 下游趋向 上游趋向 水面形态 流态 名称 水深范围 区域 底 坡 正常水深 正常水深、水跃 名称 C1 C3 i = ik K N N K 表 临界坡水面线类型及特性控制水深 壅水 急流C33 水平线 壅水 缓流C11临界坡 下游趋向 上游趋向 水面形态 流态 水深范围 区域 底 坡 正常水深 正常水深、水跃6.6.4 平坡渠道中的水面线 K H2 H3 i = 0 K 表 平坡水面线类型及特性 控制水深 壅水 急流H33 控制水深、水跌 降水 缓流H22平坡 下游趋向 上游趋向 水面

45、形态 流态 名称 水深范围 区域 底 坡 水平线 水跃K H2 H3i = 0 K 6.6.5 逆坡渠道中的水面线 A2 i 0 K K A3 表 逆坡水面线类型及特性 控制水深 壅水 急流A33 控制水深、水跌 降水 缓流A22平坡 下游趋向 上游趋向 水面形态 流态 名称 水深范围 区域 底 坡 水平线 水跃K A3 i 0 K A2 hkh0i ikS1S2S3hkh0KKNN6.6.6 渠道水面曲线分区hkh0i = ikC1C3NKNK 图 临界坡上的均匀流 K ,NK ,Nhki = 0H3H2 图 平坡渠道KKhki 0 图 逆坡渠道A2A3KK8.6 非均匀渐变水面变化的分析8

46、.6.1 缓坡渠道中的水面线 8.6.2 陡坡渠道中的水面线8.6.3 临界坡渠道中的水面线8.6.4 平坡渠道中的水面线 8.6.5 逆坡渠道中的水面线8.6.6 渠道水面曲线的分区8.6.7 渠道水面线演示N M 1 M2 M3i ik水平 N N K K 6.6.7 渠道水面线演示 缓坡水面线M 1 M2 M3i ik水平 N K M 1 i ikKNNKM3 i ik N K N K M3 i ik N N K K i ik S1S2N N K K M1S2i 2 ik i 1 ik KNKNKNS3 i ik K N 临界坡渠道中的水面线 C1 C3 i = ik NKNKC1 C3

47、 i = ik K N N K 平坡渠道中的水面线 K H2 H3 i = 0 K K H2 H3i = 0 K 逆坡渠道中水面线 A2 i 0 K K A3 K A3 i ik K N L 陡坡长渠上游来流为急流均匀流(N-N),下游水面线与L有关,有三种可能。解L 很短,陡坡段为均匀流 平坡段上形成H3 型壅水线 i = 0 i ik K N LH3 K 随L 增大,水跃发生在平坡段中,跃后为H2型降水线,至跌坎处水深为hk H2 i = 0 i ik K N LH3 K L再 增大,水跃发生在平坡段中,水跃向上游推进,跃后为H2型降水线,至跌坎处水深为hk H2 i = 0 i ik K

48、 N LH3 K 解 L再增加,水跃跃首位置向上游推移到两个坡度相交处。 H2 i = 0 i ik K N LH3 K H2 解 L很长时,水跃发生在陡坡渠道中。水跃发生位置向上游推移。 H2 i = 0 i ik K N LH3 K H2 S1 解 L很长时,水跃发生在陡坡渠道中。水跃发生位置向上游推移。 H2 i = 0 i ik K N LH3 K H2 S1 K hc H3K N2 N2 H2 S2 C3 C1 M2 i 2ik i 1= 0 i 3 = ik i 4 h0=2.0m,水面线为 M1型正常水深 h0=2.0m hk=1.2m用分段求和法计算水面线 以渠道末端水深 h1

49、 =3.4m,向上游逐段计算 表 逐段计算水面线 hRCvJ = v2/C2RJP(i-JP)v2/2gEsEsssmmm0.5/sm/s10-4 10-4 10-4mmmmm3.40 2.31 52.25 0.88 1.22 0.04 3.44 0.00 3.20 2.20 51.83 0.95 1.53 1.37 7.63 0.05 3.25 0.19 253.26 253.26 3.00 2.09 51.40 1.03 1.94 1.73 7.27 0.05 3.05 0.19 263.48 516.75 2.80 1.98 50.93 1.13 2.50 2.22 6.78 0.07

50、2.87 0.19 279.01 795.76 2.60 1.87 50.43 1.25 3.27 2.88 6.12 0.08 2.68 0.19 304.43 1100.20 2.40 1.75 49.90 1.38 4.36 3.82 5.18 0.10 2.50 0.18 351.29 1451.48 2.30 1.69 49.61 1.45 5.08 4.72 4.28 0.11 2.41 0.09 208.13 1796.85 2.00 1.51 48.69 1.73 8.36 6.72 2.28 0.15 2.15 0.26 1120.87 2780.49 1.98 1.50 4

51、8.62 1.75 8.67 8.52 0.48 0.16 2.14 0.02 334.21 3114.70 用分段求和法计算水面线 以渠道末端水深 h1 =3.4m,向上游逐段计算 表 逐段计算水面线 hRCvJ = v2/C2RJP(i-JP)v2/2gEsEsssmmm0.5/sm/s10-4 10-4 10-4mmmmm3.40 2.31 52.25 0.88 1.22 0.04 3.44 0.00 3.20 2.20 51.83 0.95 1.53 1.37 7.63 0.05 3.25 0.19 253.26 253.26 3.00 2.09 51.40 1.03 1.94 1.7

52、3 7.27 0.05 3.05 0.19 263.48 516.75 2.80 1.98 50.93 1.13 2.50 2.22 6.78 0.07 2.87 0.19 279.01 795.76 2.60 1.87 50.43 1.25 3.27 2.88 6.12 0.08 2.68 0.19 304.43 1100.20 2.40 1.75 49.90 1.38 4.36 3.82 5.18 0.10 2.50 0.18 351.29 1451.48 2.30 1.69 49.61 1.45 5.08 4.72 4.28 0.11 2.41 0.09 208.13 1796.85 2

53、.00 1.51 48.69 1.73 8.36 6.72 2.28 0.15 2.15 0.26 1120.87 2780.49 1.98 1.50 48.62 1.75 8.67 8.52 0.48 0.16 2.14 0.02 334.21 3114.70 用分段求和法计算水面线 以渠道末端水深 h1 =3.4m,向上游逐段计算水面线 表 逐段计算水面线 hRCvJ = v2/C2RJP(i-JP)v2/2gEsEsssmmCm/s10-4 10-4 10-4mmmmm3.40 2.31 52.25 0.88 1.22 0.04 3.44 0.00 3.20 2.20 51.83 0.9

54、5 1.53 1.37 7.63 0.05 3.25 0.19 253.26 253.26 3.00 2.09 51.40 1.03 1.94 1.73 7.27 0.05 3.05 0.19 263.48 516.75 2.80 1.98 50.93 1.13 2.50 2.22 6.78 0.07 2.87 0.19 279.01 795.76 2.60 1.87 50.43 1.25 3.27 2.88 6.12 0.08 2.68 0.19 304.43 1100.20 2.40 1.75 49.90 1.38 4.36 3.82 5.18 0.10 2.50 0.18 351.29

55、1451.48 2.30 1.69 49.61 1.45 5.08 4.72 4.28 0.11 2.41 0.09 208.13 1796.85 2.00 1.51 48.69 1.73 8.36 6.72 2.28 0.15 2.15 0.26 1120.87 2780.49 1.98 1.50 48.62 1.75 8.67 8.52 0.48 0.16 2.14 0.02 334.21 3114.70 用分段求和法计算水面线 以渠道末端水深 h1 =3.4m,向上游逐段计算水面线 表 逐段计算水面线 hRCvJ = v2/C2RJP(i-JP)v2/2gEsEsssmmCm/s10-4

56、 10-4 10-4mmmmm3.40 2.31 52.25 0.88 1.22 0.04 3.44 0.00 3.20 2.20 51.83 0.95 1.53 1.37 7.63 0.05 3.25 0.19 253.26 253.26 3.00 2.09 51.40 1.03 1.94 1.73 7.27 0.05 3.05 0.19 263.48 516.75 2.80 1.98 50.93 1.13 2.50 2.22 6.78 0.07 2.87 0.19 279.01 795.76 2.60 1.87 50.43 1.25 3.27 2.88 6.12 0.08 2.68 0.1

57、9 304.43 1100.20 2.40 1.75 49.90 1.38 4.36 3.82 5.18 0.10 2.50 0.18 351.29 1451.48 2.30 1.69 49.61 1.45 5.08 4.72 4.28 0.11 2.41 0.09 208.13 1796.85 2.00 1.51 48.69 1.73 8.36 6.72 2.28 0.15 2.15 0.26 1120.87 2780.49 1.98 1.50 48.62 1.75 8.67 8.52 0.48 0.16 2.14 0.02 334.21 3114.70 用分段求和法计算水面线 以渠道末端水

58、深 h1 =3.4m,向上游逐段计算水面线 表 逐段计算水面线 hRCvJ = v2/C2RJP(i-JP)v2/2gEsEsssmmCm/s10-4 10-4 10-4mmmmm3.40 2.31 52.25 0.88 1.22 0.04 3.44 0.00 3.20 2.20 51.83 0.95 1.53 1.37 7.63 0.05 3.25 0.19 253.26 253.26 3.00 2.09 51.40 1.03 1.94 1.73 7.27 0.05 3.05 0.19 263.48 516.75 2.80 1.98 50.93 1.13 2.50 2.22 6.78 0.0

59、7 2.87 0.19 279.01 795.76 2.60 1.87 50.43 1.25 3.27 2.88 6.12 0.08 2.68 0.19 304.43 1100.20 2.40 1.75 49.90 1.38 4.36 3.82 5.18 0.10 2.50 0.18 351.29 1451.48 2.30 1.69 49.61 1.45 5.08 4.72 4.28 0.11 2.41 0.09 208.13 1796.85 2.00 1.51 48.69 1.73 8.36 6.72 2.28 0.15 2.15 0.26 1120.87 2780.49 1.98 1.50

60、 48.62 1.75 8.67 8.52 0.48 0.16 2.14 0.02 334.21 3114.70 i = 0.0009 图 计算水面线 计算方向8.7.2 计算方法计算类型 已知流段两端水深,求两流段间距离 已知棱柱体渠道断面水深,可直接计算距离 绘制水面曲线 已知流段一水深与流段长,求另一断面水深 方法:假定另一断面水深,计算流段距离,与实际流段距 离比较,直至两者相等。非棱柱体渠道必须用该方法试算。 根据水面线变化规律,假定另一水深,再计算两断面距离 例题:某一边墙成直线收缩的矩形渠道,渠长为60m,进口宽度为8m,出口宽度4m,渠道为逆坡,i = -0.06, n = 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论