电控汽车波形分析__氧传感器波形分析ppt课件_第1页
电控汽车波形分析__氧传感器波形分析ppt课件_第2页
电控汽车波形分析__氧传感器波形分析ppt课件_第3页
电控汽车波形分析__氧传感器波形分析ppt课件_第4页
电控汽车波形分析__氧传感器波形分析ppt课件_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电控汽车波形分析 氧传感器波形分析.根本概念上流动系统(Upstream System) 上流动系统是指位于氧传感器前的,包括传感器、执行器和发动机ECU的发动机各系统(包括辅助系统),即在氧传感器之前的影响尾气的一切机械部件和电子部件,例如:进气系统、废气再循环系统和发动机电子控制系统等。下流动系统(Downstream System) 下流动系统是指位于氧传感器后面的排气系统部件,包括三效催化转化器、排气管和消声器等。.闭环(Close Loop)闭环是指发动机ECU根据氧传感器的反响信号不断地调整混合气的空燃比,使其值符合规定。根据氧传感器的信号波形可以判别系统能否曾经进入闭环控制形状。

2、用波形测试设备测得的发动机起动后的氧传感器输出的信号电压波形如下图。发动机起动后的氧传感器输出的信号电压波形.由图可以看出发动机起动后氧传感器输出的信号电压先逐渐升高到450 mV,然后进入升高和下降(混合气变浓和变稀)的循环(右侧图形),后者表示燃油反响控制系统进入了闭环形状。当然,只需当氧传感器在无缺点的时候氧传感器的信号电压波形才干反映燃油反响控制系统的情况;假设氧传感器有缺点,那么它所产生的波形就不反映燃油反响控制系统的情况。.氧传感器信号波形的检测测试氧传感器信号波形有2种常用的方法:丙烷加注法和急加速法。按照波形测试设备运用手册衔接好波形测试设备丙烷加注法检测氧传感器信号波形 氧传

3、感器信号测试中有3个参数(最高信号电压、最低信号电压和混合气从浓到稀时信号的呼应时间)需求检查,只需在这3个参数中有1个不符合规定,氧传感器就必需予以改换。改换氧传感器以后还要对新氧传感器的这3个参数进展检查,以判别新的氧传感器能否完好。.测试步骤(氧化钛型传感器和氧化锆型传感器都适用)是:1.衔接并安装加注丙烷的工具。2.把丙烷接到真空管入口处(对于有PCV系统或制动助力系统的汽车应在其衔接完好的条件下进展测试)。3.接上并设置好波形测试设备。4.起动发动机,并让发动机在2 500 r/min下运转2 min3 min。5.使发动机怠速运转。.6.翻开丙烷开关,缓慢加注丙烷,直到氧传感器输出

4、的信号电压升高(混合气变浓),此时一个运转正常的燃油反响控制系统会试图将氧传感器的信号电压向变小(混合气变稀)的方向拉回;然后继续缓慢地加注丙烷,直到该系统失去将混合气变稀的才干;接着再继续加注丙烷,直到发动机转速因混合气过浓而下降100 r/min200 r/min。这个操作步骤必需在20 s25 s内完成。7.迅速把丙烷输入端移离真空管,以呵斥极大的瞬时真空走漏(这时发动机失速是正常景象,并不影响测试结果),然后封锁丙烷开关。.8.待信号电压波形挪动到波形测试设备显示屏的中央位置时锁定波形,测试完成。接着就可以经过分析信号电压波形来确定氧传感器能否合格。 一个好的氧传感器应输出如下图的信号

5、电压波形,其3个参数值必需符合表所列的值。氧传感器规范信号电压波形.氧传感器信号波形参数规范序号 丈量参数 允许范围1 最高信号电压 850mV 左侧波形2 最低信号电压 75175mV 右侧波形 混合气从浓到稀的 100ms(波形中在3003 最大允许呼应时间 600mV之间的下降 波形的中间部分 段应该是上下垂直的.一个已损坏的氧传感器能够输出如下图的信号电压波形,其中,最高信号电压下降至427 mV,最低信号电压0 V,混合气从浓到稀时信号的呼应时间却延伸为237 ms,所以这3个参数均不符合规范。已损坏的氧传感器信号电压波形.用汽车波形测试设备对氧传感器进展测试时可以从显示屏上直接读取

6、最高和最低信号电压值,并且还可以用波形测试设备游动标尺读出信号的呼应时间(这是汽车波形测试设备特有的功能)。汽车波形测试设备还会同时在其屏幕上显示测试数据值,这对分析波形非常有协助。假设在封锁丙烷开关之前,发动机怠速运转时间(即混合气到达过浓形状的时间)超越25 s,那么能够是氧传感器的温度太低,这不仅会使信号电压的幅值过低而且还会使输出信号下降的时间延伸,呵斥氧传感器不合格的假象。因此,在检测前应将氧传感器充分预热(即让发动机在2 500 r/min下运转2 min3 min)。.假设发动机仅怠速运转5 s,就能够有1个或多个参数不合格,而这个不合格并不阐明氧传感器是坏的,只是测试条件没有满

7、足的缘故。多数损坏的氧传感器都可以从其信号电压波形上明显地分辨出来。假设从信号电压波形上还无法准确地断定氧传感器的好坏,那么可以用波形测试设备上的游动标尺读出最大和最小信号电压值以及信号的呼应时间,然后用这3个参数来判别氧传感器的好坏。.急加速法检测氧传感器信号电压波形对有些汽车,用丙烷加注法测试氧传感器信号电压波形是非常困难的,由于这些汽车的发动机控制系统具有真空走漏补偿功能(采用速度密度方式进展空气流量的计量或安装了进气压力传感器等),可以非常快地补偿较大的真空走漏,所以氧传感器的信号电压决不会降低。这时,在测试氧传感器的过程中就要用手动真空泵使进气压力传感器内的压力稳定,然后再用急加速法

8、来测试氧传感器。.急加速法测试步骤如下:1.以2 500 r/min的转速预热发动机和氧传感器2 min6 min。然后再让发动机怠速运转20 s。2.在2 s内将发动机节气门从全闭(怠速)至全开1次,共进展5次6次。特别提示:不要使发动机空转转速超越4 000 r/min,只需用节气门进展急加速和急减速就可以了。.3.定住屏幕上的波形(图),接着就可根据氧传感器的最高、最低信号电压值和信号的呼应时间来判别氧传感器的好坏。在信号电压波形中,上升的部分是急加速呵斥的,下降的部分是急减速呵斥的。急加速法测试时氧传感器的信号电压波形.氧化钛型氧传感器氧化钛型氧传感器是用于输出信号为5 V或1 V的可

9、变电阻,其任务原理与发动机冷却液温度传感器(ECT)和进气温度传感器(IAT)类似。ECT和IAT都是一个可变电阻器,其电阻值随着温度的变化而变化;氧化钛型氧传感器的电阻值那么随其周围氧含量的变化而变化。发动机电控单元为读取这个可变电阻两端的电压降,通常都要给它提供一个参考任务电压,普通是1 V(也有的是5 V),氧化钛型氧传感器保送给发动机电控单元的是一个稍低的反映混合气空燃比变化的变化电压(信号电压)。.大多数氧化钛型氧传感器用在多点燃油放射系统中,氧传感器用5 V电源,在其他汽车上用1 V电源。除了少数5 V氧化钛型氧传感器系统以外,多数汽车氧化钛型氧传感器都具有与氧化锆型氧传感器一样的

10、性能。少数与氧化锆型氧传感器信号波形不同的5 V氧化钛型氧传感器信号波形有2个特点:1.信号电压的变化是从0 V到5 V,而不是从0 V到1 V。2.信号电压与其他氧传感器的信号电压相反:混合气浓时电压低,混合气稀时电压高(图)。.氧化钛型氧传感器和氧化锆型氧传感器的信号呼应时间普通是一样的。氧化钛型氧传感器的信号电压波形.不同燃油放射系统中的氧传感器波形通常有2种不同的燃油放射系统:节气门体燃油放射(TBI)系统和多点式燃油放射(MFI)系统。由于它们的构造、原理不同,其氧传感器的信号也稍有不同。节气门体燃油放射系统氧传感器信号电压波形节气门体燃油放射系统(又称单点式燃油放射系统)只需一个喷

11、油器,由于系统的机械元件少了,所以它只需用较少的时间就可以呼应系统的燃油控制命令,较迅速地改动喷油器的喷油量。.因此,在一样的时间内,该系统氧传感器信号电压变化的频率较高,其频率为0.2 Hz(怠速时)3 Hz(2 500 r/min时),如下图。典型单点式燃油放射系统氧传感器的信号电压波形.多点式燃油放射(MFI)系统氧传感器信号电压波形多点式燃油放射系统由于大大改动了电子与机械部分设计,因此性能超越节气门体单点式燃油放射系统。该系统的进气通道明显缩短,从节气门体燃油放射系统的喷油器到进气门的间隔没有了,氧传感器信号电压变化的频率为0.2 Hz(怠速时)5 Hz (2 500 r/min时)

12、,如下图。.因此,该系统对燃油的控制更准确,氧传感器的信号电压波形更规范,三效催化转化器的效果更好。但因该系统分配至各气缸的燃油也不完全相等,所以氧传感器的信号电压波形会产生杂波或尖峰。典型多点式燃油放射系统氧传感器的信号电压波形.双氧传感器信号电压波形分析在许多汽车发动机的燃油反响控制系统中,安装了2只氧传感器。为顺应美国环境维护署(EPA)对废气控制的要求,从1994年起有些汽车在三效催化转化器的前后都装有1只氧传感器,这种构造在装有OBD的汽车上可用于检查三效催化转化器的性能,在一定情况下还可以提高对混合气空燃比的控制精度。由于氧传感器信号的反响速度快,其信号电压波形就成为最有价值的判别

13、发动机性能的根据之一。对汽车维修人员来说,氧传感器安装得越多,益处就越多。.通常,氧传感器的位置越接近熄灭室,燃油控制的精度就越高,这主要是由尾气气流的特性(例如尾气的流动速度,排气通道的长度和传感器的呼应时间等)决议的。许多制造厂在每个气缸的排气歧管中都安装1只氧传感器,这就使汽车维修人员容易判别出任务失常的气缸,减少判别失误。在许多情况下只需能迅速地判别出大部分无缺点的气缸(至少为气缸总数的1/2以上),就能缩短缺点诊断时间。.双氧传感器信号电压波形及分析如下图双氧传感器信号电压波形分析.一个任务正常的三效催化转化器,在配上燃油反响控制系统后就可以保证将尾气中的有害成分转变为相对无害的二氧

14、化碳和水蒸气。但是,三效催化转化器会因温度过高(如点火不良时)而损坏(催化剂有效外表减少和板块金属烧结),也会因遭到燃油中的磷、铅、硫或发动机冷却液中的硅的化学污染而损坏。OBD诊断系统的出现改良了三效催化转化器的随车监视系统。在汽车匀速行驶时,安装在三效催化转化器后的氧传感器信号电压的动摇应比装在三效催化转化器前的氧传感器(前氧传感器)信号电压的动摇小得多(图a),由于正常运转的三效催化转化器在转化HC和CO时要耗费氧气。OBD监视系统正是根据这个原理来检测三效催化转化器转化效率的。.当三效催化转化器损坏时,三效催化转化器的转化效率丧失,这时在其前后的排气管中的氧气量非常接近(几乎相当于没有

15、安装三效催化转化器),前、后两氧传感器的信号电压波形就趋于一样(图b),并且电压动摇范围也趋于一致。出现这种情况应改换三效催化转化器。.氧传感器的杂波分析杂波能够是由于熄灭效率低呵斥的,它反映了发动机各缸任务性能以及三效催化转化器任务效率降低的情况。对杂波的分析是尾气分析中最重要的内容,由于杂波会影响燃油反响控制系统的正常运转,使反响控制程序失去控制精度或“反响节拍,导致混合气空燃比超出正常范围,从而影响三效催化转化器的任务效率以及尾气排放和发动机性能。杂波信号的幅度越大,各个熄灭过程中氧气量的差别越大。.在加速方式下,可以与碳氢化合物(HC)相对应的氧传感器杂波波形的峰值毛刺是一种非常重要的

16、信息,由于它表示发动机在加大负荷的情况下出现了断火景象。杂波还阐明由于进入三效催化转化器的尾气中的氧含量升高而呵斥NOx的添加,由于在浓氧环境(稀混合气条件)下三效催化转化器中的NOx无法减少。在燃油反响控制系统完全正常时,氧传感器信号电压波形上的少量杂波是允许的,而大量杂波那么是不能忽视的。.需求学会区分正常的杂波和不正常杂波的方法,而最好的学习方法就是察看在不同行驶里程下不同类型轿车氧传感器的信号电压波形。一张所修轿车的规范氧传感器信号电压波形图,能协助维修人员了解怎样的杂波是允许的、正常的,而怎样的杂波是应该留意的。关于杂波的规范是:在发动机性能良好形状下(没有真空走漏,尾气中的HC和氧

17、含量正常),氧传感器信号电压波形中所含的杂波是正常的。.杂波产生的缘由氧传感器信号电压波形上的杂波通常是由发动机点火不良、构造缘由(如各缸的进气管道长度不同)、零件老化及其他各种缺点(如进气管堵塞、进气门卡滞等)引起的。其中,由点火不良引起的杂波呈高频毛刺状,呵斥点火不良的缘由有:1.点火系统本身有缺点(如火花塞、高压线、分电器盖、分火头和点火线圈一次侧绕组的损坏等)。2.混合气过浓(空燃比约为13)或过稀(空燃比约为17)。.3.发动机的机械缺点(如气门烧损、活塞环断裂或磨损、凸轮磨损和气门卡住等)引起气缸压力过低。4.1个气缸或几个气缸有真空走漏缺点。(真空走漏会呵斥混合气过稀。)5.在多

18、点式燃油放射发动机中各喷油器喷油量不一致(喷油器堵塞或卡死),呵斥个别气缸内的混合气过浓或过稀。.在判别点火不良的缘由时,应首先检查点火系统本身能否有缺点,然后检查气缸压力能否正常,再检查能否有气缸真空走漏景象。假设这三项均正常,那么对于多点式燃油放射发动机来说,点火不良的缘由普通就是各喷油器的喷油量不一致。点火系统本身的缺点和气缸压力过低缺点可以用汽车示波器检查,而气缸真空走漏缺点可以经过在所疑心的区域或周围加丙烷的方法检查(察看汽车示波器上的氧传感器信号电压波形能否变多且尖峰消逝)。.氧传感器杂波的判别原那么假设氧传感器信号电压波形上的杂波比较明显,那么它通常与发动机的缺点有关,在发动机修

19、缮后应消逝;假设氧传感器信号电压波形上的杂波不明显,并且可以断定进气歧管无真空走漏,排气中的HC和氧的含量正常,发动机的转动或怠速运转比较平稳,那么该杂波是正常的,在发动机修缮中普通不能够消除。.杂波的三种类型a.增幅杂波增幅杂波是指在氧传感器的信号电压波形中经常出如今300 mV600 mV的一些不重要的杂波(图)。发动机怠速工况时氧传感器信号电压中的增幅杂波由于增幅杂波大多是由氧传感器本身的化学特性引起的,而不是由发动机的缺点引起的,因此它又称为开关型杂波。由此可见,所谓明显的杂波是指高于600 mV和低于300 mV的杂波。.b.中等杂波中等杂波是指在信号电压波形的高电压段部分向下冲的尖

20、峰。中等杂波尖峰幅度不大于150 mV(图)。当氧传感器的波形经过450 mV时,中等杂波会大到200 mV(见上图)。发动机怠速工况时单点式燃油放射系统中等杂波氧传感器信号电压波形中.中等杂波对特定的缺点诊断能够有用,它与燃油反响系统的类型、发动机的运转方式(如在发动机怠速运转时氧传感器信号电压波形上的杂波比较多)、发动机的系列或氧传感器的类型有很大关系。c.严重杂波严重杂波是指振幅大于200 mV的杂波,在波形测试设备上表现为从氧传感器的信号电压波形顶部向下冲(冲过200 mV或到达信号电压波形的底部)的尖峰,并且在发动机继续运转期间它会覆盖氧传感器的整个信号电压范围。.发动机处在稳定的运转方式时,例如稳定在2 500 r/min时,假设严重杂波可以继续几秒,那么意味着发动机有缺点,通常是点火不良或各缸喷油器喷油量不一致(图)。因此,这类杂波必需予以排除。由损坏的喷油器导致的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论