版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数则函数的图象的对称轴方程为( )ABCD2已知不重合的平面 和直线 ,则“ ”的充分不必要条件是( )A内有无数条直线与平行B 且C 且D内的任何直线都与平行3已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的
2、距离为( )A2kB4kC4D24的展开式中,项的系数为( )A23B17C20D635已知a,b是两条不同的直线,是两个不同的平面,且,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6已知(),i为虚数单位,则( )AB3C1D57 “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )ABCD8已知抛
3、物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为 ABCD9对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )A或BC或D10给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A12种B18种C24种D64种11著名的斐波那契数列:1,1,2,3,5,8,满足,若,则( )A2020B4038C4039D404012赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为
4、边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,内角所对的边分别是.若,则_,面积的最大值为_.14某市高三理科学生有名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取份试卷进行分析,则应从分以上的试卷中抽取的份数为_.15一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷
5、砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_种.16在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是_吨.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列是等差数列,前项和为,且,(1)求(2)设,求数列的前项和18(12分)在四棱椎中,四边形为菱形,分别为,中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.19(12分)已知变换将平面上的点,分别变换为点,设变换对应的矩阵为(1)求矩阵;(2)求矩阵的特征值20(1
6、2分)已知函数,其中,(1)当时,求的值;(2)当的最小正周期为时,求在上的值域21(12分)已知四棱锥中,底面为等腰梯形,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.22(10分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】,将看成一个
7、整体,结合的对称性即可得到答案.【详解】由已知,令,得.故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.2B【解析】根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A. 内有无数条直线与平行,则相交或,排除;B. 且,故,当,不能得到 且,满足;C. 且,则相交或,排除;D. 内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.3D【解析】分析可得,再去绝
8、对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.4B【解析】根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则出,则出,该项为:;出,则出,该项为:;出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.5C【解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.
9、【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.6C【解析】利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.7A【解析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属
10、于容易题.8A【解析】求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,求出等式左边式子的范围,将等式右边代入,从而求解【详解】解:由题意可得,焦点F(1,0),准线方程为x1,过点P作PM垂直于准线,M为垂足,由抛物线的定义可得|PF|PM|x1,记KPF的平分线与轴交于根据角平分线定理可得,当时,当时,综上:故选:A【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键考查学生的计算能力,属于中档题9C【解析】根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【详解】由得,.令,
11、则,令,解得,所以当时,则在内单调递增;当时,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.10C【解析】根据题意,分2步进行分析:,将4人分成3组,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案【详解】解:根据题意,分2步进行分析:,将4人分成3组,有种分法;,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排
12、列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题11D【解析】计算,代入等式,根据化简得到答案.【详解】,故,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.12A【解析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可【详解】在中,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题二、填空题:本题共4小题,每小题5分,共20分。131 【解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范
13、围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.14【解析】由题意结合正态分布曲线可得分以上的概率,乘以可得.【详解】解:,所以应从分以上的试卷中抽取份.故答案为:.【点睛】本题考查正态分布曲线,属于基础题.1511【解析】将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”. 采用分类计数原理,求得总的方法数.【详解】(1)先贴如
14、图这块瓷砖,然后再贴剩下的部分,按如下分类:5个: ,3个,2个:,1个,4个:,(2)左侧两列如图贴砖,然后贴剩下的部分:3个:,1个,2个:,综上,一共有(种).故答案为:11.【点睛】本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.1610【解析】根据已知数据直接计算即得.【详解】由题得,.故答案为:10【点睛】本题考查求平均数,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2) 【解析】(1)由数列是等差数列,所以,解得,又由,解得, 即可求得数列的通项公式; (2)由(1)得,利用乘公比错位相减
15、,即可求解数列的前n项和【详解】(1)由题意,数列是等差数列,所以,又,由,得,所以,解得, 所以数列的通项公式为 (2)由(1)得,两式相减得,即【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18(1)证明见解析;(2).【解析】(1)证明,得到平面,得到证明.(2)以点为坐标原点,建立如图所示的空间直角坐标系,平面的一个法向量为,平面的一个法向量为,计算夹角得到答案.【详解】(1)因
16、为四边形是菱形,且,所以是等边三角形,又因为是的中点,所以,又因为,所以,又,所以,又,所以平面,所以,又因为是菱形,所以,又,所以平面,所以.(2)由题意结合菱形的性质易知,以点为坐标原点,建立如图所示的空间直角坐标系,则,设平面的一个法向量为,则:,据此可得平面的一个法向量为,设平面的一个法向量为,则:,据此可得平面的一个法向量为,平面与平面所成锐二面角的余弦值.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.19(1)(2)1或6【解析】(1)设,根据变换可得关于的方程,解方程即可得到答案;(2)求出特征多项式,再解方程,即可得答案;【详解】(1)设,则,即,解
17、得,则(2)设矩阵的特征多项式为,可得,令,可得或【点睛】本题考查矩阵的求解、矩阵的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.20(1)(2)【解析】(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可【详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,当时,(最大值)当时,在是增函数,在是减函数的值域是【点睛】本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题21(1)见证明;(2)【解析】(1)先证明等腰梯
18、形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案【详解】(1)证明:在等腰梯形,易得 在中,则有,故,又平面,平面,即平面,故平面丄平面.(2)在梯形中,设, ,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,设平面的法向量为,由得,取,得,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题22(1)(2)是为定值,的横坐标为定值【解析】(1)根据“直线垂直于轴时,四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店运营外包合同范本
- 第5课《孔乙己》课件+2023-2024学年统编版语文九年级下册 第3课时
- 实习离职合同范本
- 绿地购房合同范本
- 鞋采购合同范本
- 游客接送合同范本
- 家长会培训怎么做
- 《五苓散对水负荷大鼠利尿作用及与水通道蛋白-1相关性的初步研究》
- 小产权房合同范本
- 《基于改进收益法的ZD公司海域使用权价值评估案例研究》
- 【初中道法】增强安全意识 课件-2024-2025学年统编版道德与法治七年级上册
- 【初中化学】二氧化碳的实验室制取课件-2024-2025学年九年级化学人教版上册
- 学校提高《规范书写水平、传承汉字文化》活动方案3篇
- 2024年湖北省公务员考试《行测》真题及答案解析
- 第4章《一元一次方程》-2024-2025学年七年级数学上册单元测试卷(苏科版2024新教材)
- 浙江省杭州市采荷中学2024-2025学年七年级上学期期中考试英语试题
- DB3502T 148-2024中小型水库生产运行标准化管理规程
- 公司组织机构管理制度
- 预习-21《蝉》导学案
- 四年级数学上册 第4章《运算律》单元测评必刷卷(北师大版)
- 期中测试卷(试题)-2024-2025学年数学五年级上册北师大版
评论
0/150
提交评论