版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )AB4C2D2已知集合,则ABCD3直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A10B9C8D74若函数()的图象过点,则( )A函数的值域是B点是的一
2、个对称中心C函数的最小正周期是D直线是的一条对称轴5定义,已知函数,则函数的最小值为( )ABCD6党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD7在中,内角的平分线交边于点,则的面积是( )ABCD8若函数的图象如图所示,则的解析式可能是( )ABCD9已知等比数列满足,等差数列中,为数列的前项和,则(
3、)A36B72CD10已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A若,且,则B若,且,则C若,且,则D若,且,则11已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为( )ABCD12设集合、是全集的两个子集,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13函数满足,当时,若函数在上有1515个零点,则实数的范围为_.14已知向量,若,则_.15已知集合,则_16(5分)国家禁毒办于2019
4、年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值18(12分)已知函
5、数.(1)当a=2时,求不等式的解集;(2)设函数.当时,求的取值范围.19(12分)已知函数当时,求函数的极值;若存在与函数,的图象都相切的直线,求实数的取值范围20(12分)已知函数,.(1)当时,求函数的值域;(2),求实数的取值范围.21(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.22(10分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余
6、弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.2C【解析】分析:根据集合可直接求解.详解:,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集
7、合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.3B【解析】根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知 所以 因为 为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题4A【解析】根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,故,对于A,由,则,故A正确;对于B,当时,故B错误;对于C,故C错误;对于D,当时,故D错误;故选
8、:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.5A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.6D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D7B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利
9、用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.8A【解析】由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.9A【解析】
10、根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.10D【解析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确故选:【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知
11、并准确判断11D【解析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a丨AF2丨丨AF1丨(1)p,利用双曲线的离心率公式求得e【详解】直线F2A的直线方程为:ykx,F1(0,),F2(0,),代入抛物线C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),设双曲线方程为:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,离心率e1,故选:D【点睛】本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题12C【解析】作出韦恩图,数形结合,即可得出结论.【详解】如图所
12、示,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由已知,在上有3个根,分,四种情况讨论的单调性、最值即可得到答案.【详解】由已知,的周期为4,且至多在上有4个根,而含505个周期,所以在上有3个根,设,易知在上单调递减,在,上单调递增,又,.若时,在上无根,在必有3个根,则,即,此时;若时,在上有1个根,注意到,此时在不可能有2个根,故不满足;若时,要使在有2个根,只需,解得;若时,在上单调递增,最多只有1个零点,不满足题意;综上,实数的范围为.故答案为:【点睛】本题考查利用导数研究函数的零
13、点个数问题,涉及到函数的周期性、分类讨论函数的零点,是一道中档题.14-1【解析】由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论【详解】由已知,故答案为:1【点睛】本题考查向量垂直的坐标运算掌握向量垂直与数量积的关系是解题关键15【解析】由于,则162【解析】由这五位同学答对的题数分别是,得该组数据的平均数,则方差三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2)4【解析】(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及
14、垂直关系,得出关系式,计算的值即可【详解】(1)将点P横坐标代入中,求得,P(2,),点P到准线的距离为,解得,抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,由,可得,又,即,把代入得,则【点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题18(1);(2)【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析: (1)当时,.解不等式,得.因此,的解集为.(2)当时,当时等号成立,所以当时,等价于. 当时,等价于,无解.当时,等价于,解得.所以的取值范围是.考点:不等式
15、选讲.19(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是试题解析:(1)函数的定义域为当时,所以 所以当时,当时,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值; (2)设函数上点与函数上点处切线相同,则 所以 所以,代入得: 设,则不妨设则当时,当时,所以在区间上单调递减,在区间上单调递增, 代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时, 又当时 因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线
16、相同又由得:所以单调递减,因此所以实数的取值范围是20(1);(2).【解析】(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,此时,则;当时,函数在区间上单调递增,当时,则.综上,实数的取值范围是.【点睛】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中
17、等题.21(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得, 在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以. (2)由题意得,故,两式相减得 所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列, 所以 因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.22(1)证明见解析;(2)【解析】(1)取BC的中点O,则,由是等边三角形,得,从而得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产力透视与提升
- 2024消防工程改造与升级合同
- 梦想砌成家园
- 金融业务全景解析
- 2024深圳小微企业社保补贴申报流程优化与合同条款3篇
- 基础设施建设战略合作协议书(2篇)
- 大型展会推广合同(2篇)
- 2024年高铁站房建设土木工程承包合同范本3篇
- 2024房屋租赁合同
- 4 不做“小马虎”第二课时(说课稿 )2023-2024学年统编版道德与法治一年级下册 第一单元 我的好习惯
- 战略管理徐飞版
- 2023浙江省杭州市中考语文真题试卷和答案
- 银行防诈骗知识宣传
- 【实战篇】华为IPD流程的应用案例
- spa浴按摩是怎么样的
- 统编版六年级语文上册专项 专题04标点符号及作用-原卷版+解析
- Book-1-Unit-3-going-positive教学设计文档
- 绩效管理外文翻译外文文献中英翻译-绩效管理外文文献
- 建立信息共享和预警机制
- 2023年湖北省鄂州市鄂城区数学七年级第一学期期末综合测试试题含解析
- 并行计算任务分配
评论
0/150
提交评论