![2022届安徽省定远县张桥高考数学四模试卷含解析_第1页](http://file4.renrendoc.com/view/019adc12d53149e555e5178d1b054de5/019adc12d53149e555e5178d1b054de51.gif)
![2022届安徽省定远县张桥高考数学四模试卷含解析_第2页](http://file4.renrendoc.com/view/019adc12d53149e555e5178d1b054de5/019adc12d53149e555e5178d1b054de52.gif)
![2022届安徽省定远县张桥高考数学四模试卷含解析_第3页](http://file4.renrendoc.com/view/019adc12d53149e555e5178d1b054de5/019adc12d53149e555e5178d1b054de53.gif)
![2022届安徽省定远县张桥高考数学四模试卷含解析_第4页](http://file4.renrendoc.com/view/019adc12d53149e555e5178d1b054de5/019adc12d53149e555e5178d1b054de54.gif)
![2022届安徽省定远县张桥高考数学四模试卷含解析_第5页](http://file4.renrendoc.com/view/019adc12d53149e555e5178d1b054de5/019adc12d53149e555e5178d1b054de55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )ABC或D2在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,那么( )ABCD3函数的值域为( )ABCD4下列函数中,既是偶函数又在区间上单调递增的是( )ABCD5记为等差数列的前项和.若,则( )A5B3C12D136数列满足:,则数列前项的和为ABCD7某几何体的三视图如图所示,则该几何体的体积为( )AB3CD48的内角的对边分别为,若,则内角( )ABCD9正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A36B2
3、1C12D610复数满足 (为虚数单位),则的值是()ABCD11金庸先生的武侠小说射雕英雄传第12回中有这样一段情节,“洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( )A20B24C25D2612下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )A16B17C18D19二、填空题:本题共4小题,每小题5分,共20分。13抛物线上到其焦点的距离为的点的个数
4、为_14如图,是圆的直径,弦的延长线相交于点垂直的延长线于点求证:15已知为等差数列,为其前n项和,若,则_.16若x,y满足,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.18(12分)已知的内角的对边分别为,且.()求;()若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.19(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线
5、为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、三点,求线段的长.20(12分)已知,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.21(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.22(10分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】首先求出集合
6、,再根据补集的定义计算可得;【详解】解:,解得,.故选:D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.2D【解析】由得,分别算出和的值,从而得到的值.【详解】,当时,当时,故选:D.【点睛】本小题主要考查对数运算,属于基础题.3A【解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.4C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不
7、符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.5B【解析】由题得,解得,计算可得.【详解】,解得,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.6A【解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可详解:,又=5,即,数列前项的和为,故选A点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需
8、注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.7C【解析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.8C【解析】由正弦定理化边为角,由三角函数恒等变换可得【详解】,由正弦定理可得,三角形中,故选:C【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关
9、键9B【解析】先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.10C【解析】直接利用复数的除法的运算法则化简求解即可【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力11D【解析】利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.12B【解析
10、】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设抛物线上任意一点的坐标为,根据抛物线的定义求得,并求出对应的,即可得出结果.【详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,
11、抛物线上到其焦点的距离为的点的个数为.故答案为:.【点睛】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.14证明见解析【解析】试题分析:四点共圆,所以,又,所以,即,得证试题解析:A连接,因为为圆的直径,所以,又,则四点共圆,所以又,所以,即,151【解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.165【解析】先作出可行域,再做直线,平移,找到
12、使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)见解析【解析】(1)求导后分析导函数的正负再判断单调性即可.(2) ,有零点等价于方程实数根,再换元将原方程转化为,再求导分析的图像数形结合求解即可.【详解】(1)的定义域为,当时,所以在单调递减;当时,所以在单调递增,所以的减区间为,增区间为.(2),有零点等价于方
13、程实数根,令则原方程转化为,令,.令,当时,当时,.如图可知当时,有唯一零点,即有唯一零点;当时,有两个零点,即有两个零点;当时,有唯一零点,即有唯一零点;时,此时无零点,即此时无零点.【点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.18();()有最大值,最大值为3.【解析】()利用正弦定理将角化边,再由余弦定理计算可得;()由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】()由得再由正弦定理得因此,又因为,所以.()当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2
14、,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.19(1)();(2).【解析】(1)化简得到直线方程为,再利用极坐标公式计算得到答案.(2)联立方程计算得到,计算得到答案 .【详解】(1)由消得,即,是过原点且倾斜角为的直线,的极坐标方程为().(2)由得,由得,.【点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.20(1)见解析;(2)最大值为.【解析】(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最
15、小值,进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,所以;(2)因为恒成立,且,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.21(1);(2)【解析】(1)求出,即可求出切线的点斜式方程,整理即可;(2)的取值范围满足,求出,当时求出,的解,得到单调区间,极小值最小值即可.【详解】(1)由于,此时切点坐标为所以切线方程为. (2)由已知,故.由于,故,设由于在单调递增同时时,时,故存在使得且当时,当时,所以当时,当时,所以当时,取得极小值,也是最小值,故由于,所以,.【点睛】本题考查导数的几何意义、不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级上册语文教学计划集合7篇
- 我的大学读后感-15篇
- 《猫城记》读书笔记个人书评
- 医学生自我介绍范文集合四篇
- 冠心病二级预防他汀治疗的理想与现实-血脂回顾和展望
- 浅析建筑物区分所有权制度
- 教师年度总结范文5篇
- 健身徒步旅行合同
- 2025年放射性核素远距离治疗机合作协议书
- 餐馆租赁合同范本
- 2024年中学科技教育工作总结样本(4篇)
- 国家开放大学电大本科《理工英语3》期末试题题库及答案1(试卷号:1377)
- 湖北省十堰市2023-2024学年高二上学期期末调研考试 物理 含答案
- 2024-2025学年广东省第一次普通高中学业水平合格性考试物理仿真模拟卷三及答案
- 护理安全小组工作计划
- 2025办公室无偿租赁合同范本
- 2024年12月八省八校T8联考高三高考物理试卷试题(含答案)
- 辽宁省抚顺市抚顺县2023-2024学年八年级上学期期末考试数学试卷(含解析)
- 《中国武术的起源》课件
- 期末测试卷(试题)(含答案)2024-2025学年北师大版数学五年级上册
- 2024年道路运输安全生产管理制度样本(5篇)
评论
0/150
提交评论