版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个几何体的三视图如图所示,则该几何体的体积为( )ABCD2已知点、若点在函数的图象上,则使
2、得的面积为的点的个数为( )ABCD3若的二项式展开式中二项式系数的和为32,则正整数的值为( )A7B6C5D44已知复数是纯虚数,其中是实数,则等于( )ABCD5已知,那么是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6设全集为R,集合,则ABCD7已知函数,满足对任意的实数,都有成立,则实数的取值范围为( )ABCD8如图,圆的半径为,是圆上的定点,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( )ABCD9根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u= lny,v=(x-4)2,
3、利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是( )AeBe2Cln2D2ln210执行程序框图,则输出的数值为( )ABCD11某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )ABCD12的展开式中各项系数的和为2,则该展开式中常数项为A-40B-20C20D40二、填空题:本题共4小题,每小题5分,共20分。13的展开式中常数项是_.14设函数 满足,且当时,又函数,则函数在上的零点个数为_.15三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相
4、邻而坐的坐法有_种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).16如图,在平行四边形中,,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.18(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,使得,证明:.19(12分)随着科技的发展,网络已逐渐融入了人们的生
5、活网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差参考公式:0.150
6、.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数列的前项和,求使成立的正整数的值21(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.()求椭圆的标准方程;()设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.22(10分)已知函数(为常数)()当时,求的单调区间;()若为增函数,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A
7、【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题2C【解析】设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,解得或或.综上,满足条件的点共有三个故选:C.【点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题3C【解析】由二项式系数性质,的展开式中所有二项式
8、系数和为计算【详解】的二项展开式中二项式系数和为,故选:C【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键4A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】 因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.5B【解析】由,可得,解出即可判断出结论【详解】解:因为,且,解得是的必要不充分条件故选:【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题6B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意
9、可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.7B【解析】由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是故选:B.【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.8B【解析】根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故
10、排除C,D选项;当时,由图象可知选B.故选:B【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.9B【解析】将u= lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u= lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.10C【解析】由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,满足条
11、件,满足条件,满足条件,满足条件,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.11A【解析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,( c为半焦距; a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,故选:A【点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.12D【解析】令x=1得a=1.故原式=的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故
12、所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项=-40+80=40二、填空题:本题共4小题,每小题5分,共20分。13-160【解析】试题分析:常数项为.考点:二项展开式系数问题.141【解析】判断函数为偶函数,周期为2,判断为偶函数,计算,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,当时,函数先增后减。当时,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像
13、共有1个公共点,则函数在上的零点个数为1故答案为:.【点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.15192【解析】根据题意,分步进行分析:,在三对父子中任选1对,安排在相邻的位置上,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,由分步计数原理计算可得答案【详解】根据题意,分步进行分析:,在三对父子中任选1对,有3种选法,由图可得相邻的位置有4种情况,将选出的1对父子安排在相邻的位置,有种安排方法;,将剩下的4人安排在剩下的4个位置,要求父子不能坐在相邻的位置,有种安排方法,则有且仅有一对父子是相邻而坐的坐法种;故答案为:【点睛】本
14、题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题16【解析】根据ABCD是平行四边形可得出,然后代入AB2,AD1即可求出的值【详解】AB2,AD1, 141故答案为:1【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)(3)【解析】根据折叠图形, ,由线面垂直的判定定理可得平面,再根据平面,得到.(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.设所求几何体的体积为
15、,设为高,则,表示梯形BEFD和 ABD的面积由,再利用导数求最值.【详解】(1)证明:不妨设与的交点为与的交点为由题知,则有又,则有由折叠可知所以可证由平面平面,则有平面又因为平面,所以.(2)解:依题意,有平面平面,又平面,则有平面,又由题意知,如图所示:以为坐标原点,为轴建立如图所示的空间直角坐标系由题意知由可知,则则有,设平面与平面的法向量分别为则有则所以因为,解得设所求几何体的体积为,设,则,当时,当时,在是增函数,在上是减函数当时,有最大值,即六面体的体积的最大值是【点睛】本题主要考查线线垂直,线面垂直,面面垂直的转化,二面角的向量求法和空间几何体的体积,还考查了转化化归的思想和运
16、算求解的能力,属于难题.18(1)(2)证明见解析(3)证明见解析【解析】(1)由题意可得,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【详解】(1),即,化简可得.令,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在上,所以在上单调递减.在上,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,因而在
17、上单调递增.当时,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则.设,当时,.时,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.19()详见解析;();数学期望为6,方差为2.4.【解析】(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2) 由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率 由列联表可知,抽到经常网购的市民的频率为:,由题
18、意,由此能求出随机变量的数学期望和方差【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2)由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,选取的3人中至少有2人经常网购的概率为: 由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,随机变量的数学期望,方差D(X)=【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题20 () .() .【解析】()由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(),由数列的错位相减法求和可得,解方程可得所求值【详解】()等比数列,其公比,且满足,和的等差中项是即有,解得: ()由()知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《素描造型人体训练》2021-2022学年第一学期期末试卷
- 吉林艺术学院《短片写作》2021-2022学年第一学期期末试卷
- 中药材基地管理协议书范文
- 2024年大学党建共建协议书模板
- 2024年大人签离婚协议书模板
- 2024年大件物标书购买合同范本
- 奶茶店撤股协议书范文模板
- 2022年公务员多省联考《申论》真题(四川县乡卷)及答案解析
- 吉林师范大学《历史学科课程与教学论》2021-2022学年第一学期期末试卷
- 吉林师范大学《行书理论与技法III》2021-2022学年第一学期期末试卷
- 三合一体系内审员培训课件
- 提请法院裁定变价方案
- 小型服装厂应急预案范文
- 消防报警设备合同
- 提升初中英语书面表达能力的教学策略探析
- 第五单元写作《如何突出中心》公开课一等奖创新教学设计-统编版语文七年级上册
- 2023-2024学年北京朝阳区高三(上)期中地理试题及答案
- 电机与拖动基础第版汤天浩习题解答
- 江苏省连云港市海州区新海初级中学2023-2024学年七年级上学期期中数学试题
- 污水处理厂冬季安全生产基础知识
- 完整版八、施工现场总平面布置图
评论
0/150
提交评论