版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学课程标准解读一、课程改革的背景二、课程的根本理念三、课程设置一、课程改革的背景两 个根底:根底知识,根本技能重视“双基的中国数学教育课程改革的背景三 大能力:运算能力、 空间想象能力、 逻辑推理能力五 个教学环节: 复习导入讲授 稳固作业影响数学教育的文化因素重视现世功业的 儒家文化 “苦读+科举的 考试文化回避“原始问题的 考据文化课程改革的背景考据文化成为中国现代数学教学的核心思想.儒家文化将创新性 的数学思维方式进行过滤, 数学 = 逻辑 数学缺少创造思考数学变化数学的应用越来越广泛计算机已经深刻地改变了数学世界数学是一个动态的过程数学内部各分支间相互渗透以及数学与其他科学相互渗
2、透数学的研究方法发生了变化课程改革的背景1、教材内容的差异 西方:重视现代数学,深入浅出;中国:偏于传统数学,由浅入深数学教育的中西比较课程改革的背景2、教材编写的差异 西方:实际问题数学概念实际问题以课题求解为主线:中国:实际问题数学概念新的数学概念按知识体系组织教材3、教学方法的差异 西方:群体合作型,动手动脑型;中国:独立完成型,大脑思维型课程改革的背景 数学教学要面对“原始问题,学习从疑问开始,创新从“原始问题开始让学生“从现实中学数学、做数学。 “用群众数学的思想改造传统的数学教育理论与实践体系二、课程的根本理念1.人人学有价值的数学。2.人人都获得必需的数学。3.不同的人在数学上得
3、到不同的开展。 课程根本理念(1)什么是有价值的数学?. 生活中的数学。. 有趣的数学。. 有利于学生开展的数学。. 在有限的时间内能学好的数学。 课程根本理念(1)必需的数学包括什么?对数学价值的根本认识。开展和解决现实数学问题的意识和能力。运用数学语言读、写、讨论和交流的本领。数学的根本思想和方法。 课程根本理念(1)不同的人在数学上得到不同的开展是什么意思? 面向全体,必须适应每位学生的 开展需要。人的开展不可能整齐划一,必须成认差异,尊重差异。 课程根本理念(1)1.数学学习是经历数学活动的过程。 2.动手实践、自主探索、合作交流是主要的学习方式。3.学生的数学学习活动是生动活泼的、主
4、动的、富有个性的。课程根本理念(2)数学学习数学教学要建立在学生已有的知识和经验的根底上。课程根本理念(3)数学教学教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的时机,帮助学生成为学习的主人。 教师的角色主要是教学活动的组织者、引导者与合作者。评价的目的是为了鼓励学生的学习和改进教师的教学,帮助学生认识自我、建立自信。建立评价目标多元、方法多样和注重过程的评价体系。课程根本理念(4)评 价把现代信息技术作为学生学习数学和解决问题的强有力的工具。现代信息技术的应用应致力于改变学生的学习方式,使学生乐意并有更多的精力投入现实的、探索性的数学活动中去。课程根本理念(5)现代信息技
5、术 计算机、多媒体和网络等既是一个人理解世界的钥匙,也是人在信息社会中得以生存的必要条件。三、课程设置 课程设置的理念趋于统一化, 这一趋势的价值取向表现为“人本化与“实用化的统一 ,课程设置 人们对课程的认识也由“教材就是学生的全部世界转变为“让全部世界成为学生的教材 课程总体目标 1:所获得的数学知识应为学生的生存与终身开展奠定坚实的根底。2:不再强调向学生提供系统的数学知识结构,而是向学生提供具有现实背景的数学。3:体会数学与自然及人类社会的密切联系,了解数学的价值,4:培养创新精神和实践能力,在情感态度和一般能力方面得到充分开展。课程设置华东师大版数学教材的编写理念教学目标:从以获取数
6、学知识、技能和能力为首要目标转变为首先关注每一个学生的情感、态度、价值观和一般能力的开展。呈现方式:从“定义、公理定理、公式例题习题的形式转变为以“问题情境建立模型解释、应用与拓展的根本模式展开内容。学习方式:由单纯的记忆、模仿和训练转变为自主探索、合作交流与实践创新。评价方式:由单纯的考查学生的学习结果转变为关注学生学习过程中的变化与开展。课程设置内容的引入:从实际情景引入数学知识内容的呈现:创设自主探索学习情景和时机内容的编写:把握课程标准,同时又具有弹性内容的表达:将背景材料与数学内容融为一体体系结构课程设置每章开始设置导图与导入语栏目多样,如“回忆“思考“概括“做一做“读一读“想一想等
7、以及 信息收集、调查研究等活动栏穿插学生阅读材料编制不同水平的练习题编写体例课程设置数与代数第1册 有理数,整式的加减第2册 一元一次方程,二元一次方程组第3册 一元一次不等式,整式的乘法第4册 数的开方,函数及其图象第5册 分式,一元二次方程第6册 二次函数主要内容 数、式 数量关系(方程、不等式) 变量关系(函数)通过实际情景,呈现知识内容,使学生理解数与代数的意义.数与代数强调数与代数是刻画现实世界的数学模型.通过学生自主探究活动学习数学,认识事物的数量关系和变化规律.强调数与形的结合.运用计算器等现代化技术手段,融入现代信息技术.降低计算的难度.减少了需要记忆的内容对一些概念以描述性表
8、述代替形式化表述 编写思路 1、加强通过实际情景使学生理解数与代数的意义 例:用字母表示具体情景中的数量关系 在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系: 温度=蟋蟀每分叫的次数7+3 试用字母表示这一关系。数与代数例:把字母表达式与实际背景联系起来 对代数式3a作出解释。 2、加强数学建模 数与代数模型主要有: 1数模型 2一元一次方程模型 3一元二次方程模型 4一次函数模型 5二次函数模型数与代数数学模型:数与代数是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表述出来的一种结构。如数学概念、数学理论体系、各种公式、各种方程以及由公式系列构成
9、的算法系统等等。近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)数与代数数学建模的过程:近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的
10、解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例
11、如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)近似、概括、抽象数学化实际问题(现实原形)数学模型(例如方程、不等式、函数)原始问题的解答数学模型的解答检验回到实际问题(用数学理论研究解决数学问题)(得解)一元二次方程只要求解简单数字系数的一元二次方程。分式方程只要求解可化为一元一次方程的分式方程,且方程中的分式不超过两个。无理方程、可化为一元二次方程的分式方程、二元二次方程组和三元一次方程组等内容均未列入?标准?之内。 数与代数 3、强调探索并表示事物的数量关系和变化规律例: 某月月历 1234567891011121314151617
12、1819202122232425262728293031数与代数问题:1绿色方框中的9个数之和与该方框正中间的数有什么关系?2这个关系对其它方框成立吗?3这个关系对任何一个月的月历都成立吗?为什么?4你还能提出哪些问题?12345678910111213141516171819202122232425262728293031数与代数 4、强调数与形的结合 结合图象对简单实际问题中函数关系进行分析。 解释简单代数式的几何意义。 数与代数例: 海水受日月的引力而产生潮汐现象,早晨海水上涨的现象叫做潮,黄昏上涨叫做汐。潮汐与人类的生活有密切的关系。以下图是某港口从 0时到12时的水深情况:大约什么时
13、间港口的水最深?深度是多少?大约什么时间港口的水浅最?深度是多少?在什么时间范围内,港口的水在增加?在什么时间范围内,港口的水在减少?数与代数aba+bbaa+ba-ba-b 或例: a2b2=(a+b)(a b)数与代数例:探索数的规律为什么总是1089 ?任意写一个三位数,要求百位数的数字比个位数的数字至少多2,比方说783; 颠倒这三个数字的顺序为387; 做减法: 783387396; 颠倒差396的三个数字的顺序为693; 做加法:3966931089。 用不同的三位数再做几次,结果都是1089,你能发现其中的原因吗例:用计算器估计方程x2+2x-10=0的解 5、强调运用计算器等现
14、代化技术手段 数与代数6、强调代数推理合情推理归纳推理、类比推理演绎推理等价转化、比例推理数与代数空间与图形主要内容第1册 图形的初步认识第2册 多边形,轴对称第3册 平移与旋转,平行四边形第4册 图形的相似,解直角三角形第5册 圆,图形的全等第6册 命题与证明 空间与图形直观感知,操作确认,学会数学说理,开展合情推理强调内容的现实背景,联系学生生活经验和活动经验以“图形变换展开几何内容相似在全等前面加强了几何建模以及探究过程,强调几何直觉,培养空间观念突出“空间与图形的文化价值打破演绎体系,以学生的认知特点展开几何内容加强合情推理,调整“证明的要求,强化理性精神,削弱了以演绎推理为主要形式的
15、定理证明对证明的要求:三个水平直观感知,操作证明,逻辑证明;三个阶段初一:数学说理,初二:证明格式,初三:证明方法编写思路 体 面 线、点 ?标准?将几何拓展为空间与图形的原由 “空间与图形包括: 图形的认识; 图形与变换 图形与坐标; 图形与论证。围绕图形和空间问题而展开,既有内在的联系,又有各自的特点和侧重。空间与图形 国际几何课程改革的趋势; 几何课程的重新定位研究现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换;更好地认识和描述生活空间、进行交流的工具。1准确把握“图形的认识各局部内容的要求 结合实例、在实际背景中理解图形的概念和性质;经历探索图形性质的过程。 1.新增
16、的内容“视图和投影的要求及说明 “会画简单几何体的三视图 要求画的是三视图的示意图,而不是像机械制图那样的精确的 图形; “会判断简单物体的三视图 要求能够在一组三视图中将指定的简单物体的三视图选出来。空间与图形2.“了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型 要求引导学生从“侧面展开图入手探索一些几何体的特征,进一步理解二维与三维图形的关系,开展空间观念。 生活中的立体图形视图 展开图平面图形根本图形定性 定量务必抓住“直观感知、操作确认两个认识阶段,淡化概念,注意渗透分类的数学思想方法.2 适度把握“图形与变换的具体目标和要求 “图形与变换包括图形的轴对称、图形的平移、图
17、形的旋转和图形的相似。 通过实例认识变换,借助图形的直观探索轴对称、平移、旋转的根本性质,以及一些根本图形的性质,并能利用图形变换设计、欣赏图案。 空间与图形 实施时,应当紧密联系学生熟悉的实例,使学生认识“生活中的图形变换,要以观察、动手操作为主要方式组织学生开展实践活动,切实把握好“图形与变换的具体目标,及其要求的“度。 例: 请说出下面乙树是怎样由甲树变换得到的。 空间与图形 了解确定图形或物体的位置的方法以及坐标法的思想,探索点的坐标的变化与图形变换之间的关系。 把坐标思想与图形变换的思想联系起来,利用直角坐标系进行既不是平移、旋转、轴对称,又不是相似的一些变换,如图形向某一个方向“伸
18、长或“压缩等。 空间与图形 3准确把握“图形与坐标的定位例: 如下图,在直角坐标系下,图1中的图案A经 过变换分别变成图2至图6中的相应 图案虚线对应于原图案,试写出图2至图6中各顶点的坐标,探索每次变换前后图案发生 了什么变化、对应点的坐标之间有什么关系。4正确理解“图形与证明的具体目标,把握好“证明的要求“图形与证明主要包括: 加强合情推理,降低演绎推理的难度和数量; 强调“理解证明的必要性,以及“言之有理、落笔有据,清晰且有条理地表达、交流辑地讨论、质疑等。 列出了四条“根本领实作为证明的依据,建构了一个局部公理化的体系。该体系中证明的命题,仅限于三角形、四边形的主要性质。力图通过适量的
19、、难度相当的命题证明,使学生既掌握证明的根本方法,又能体会证明的意义,协调地开展推理能力。 空间与图形 一条直线截两条平行直线所得的同位角相等。 两条直线被第三条直线所截,假设同位角相等,那么这两条直线平行。 假设两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,那么这两个三角形全 等。 全等三角形的对应边、对应角分别相等。 四条“根本领实作为证明的依据空间与图形一组对边平行且相等的四边形是平行四边形逻辑证明全等工具平移对角线互相平分的四边形是平行四边形逻辑证明全等工具中心对称老教材新教材老教材新教材两组对角分别相等的四边形是平行四边形都用逻辑证明空间与图形统计与概率主要内容第1册
20、数据的收集与表示第2册 统计的初步认识第3册 频率与时机 第4册 数据的整理与初步处理第5册 样本与总体第6册 数据分析与决策为什么提升统计与概率的地位现实社会中大量存在的是不确定现象当今社会媒体正在增加使用相应的语言与内容许多不确定现象无法用形式逻辑推理解决说理方式不同对不确定现象的直觉常常不可靠培养正确的直觉需要反复观察不确定现象教学方式不同义务教育数学课程标准的大动作之一就是在中小学各学段加强统计和概率的教学 统计与概率编写思路统计与概率强调统计与概率的过程性目标强调与现代信息技术的结合强调统计与概率和其他内容的联系强调防止单纯的统计量的计算和对有关术语的严格表述概率统计内容的整体安排统
21、计与概率希望教与学的形式能够让学生的兴趣在了解探究任务中产生让学生的思考在分析真实数据中形成让学生的理解在集体讨论中加深,尤其是对一些错误概念的讨论、辨析统计与概率 1、进一步学习描述数据的方法 例:一家居民小区的食品超市为了更好地安排营业时间和售货员的人数,想了解该小区居民一周到超市购置食品的天数。 你能替该超市的管理人员设计一个调查方案吗? 该超市的管理人员调查了该小区所有的500户居民,并得到下面的数据 4, 2, 0, 5, 5, 1, 2, 2, 3, 0, 4, 6, 2, 2, 1, 1, 2, 2, 你能设法将上述数据整理得较为清晰吗? 统计与概率 将上述数据整理成频数和频率表
22、: 根据上表,将数据整理成频数分布直方图和折线图。 每周到食品超市的的次数 户数 频率 0 57 11.4% 1 179 35.8% 2 145 29.0% 3 42 8.4% 4 29 5.8% 5 25 5.0% 6 17 3.4% 7 6 1.2%统计与概率 根据调查结果,每周去超市少于3次的居民户占小区总居民户的百分比是多少?你还能获得哪些信息? 如果你是超市的管理人员,根据上述调查,你会作出哪些决策?与同伴进行交流。统计与概率 2、感受抽样和随机抽样的重要性,体会用样本估计总体的思想 1抽样的必要性 2样本对结果的影响 3运用样本估计总体的特征 统计与概率 3、有意识地获取并能读懂数
23、据信息 例:广告称“有75的人使用本公司的产品,学生要能意识到广告没有提供数据的来源,也许样本不具有代表性,并不能反映总体的真实情况。统计与概率 4、体会概率的意义,了解频率与概率的关系 例:每人抛一枚硬币10次,分别记录正面朝上和反面朝上的次数,并分别求出正面朝上和反面朝上的频率。 将全班数据进行汇总,在坐标系中按投掷次数,频率描点,连线,用彩色笔画出表示频率为12的直线,观察折线与直线的关系。 通过实验获得图钉从一定高度落下后钉尖着地的频率,考虑什么因素会影响结果。统计与概率 5、经历“猜测结果进行实验分析实验结果的过程,建立正确的概率直觉 例:讨论下面掷硬币游戏的公平性: 小明和小红在做
24、掷硬币的游戏任意掷一枚硬币两次,如果两次朝上的面相同,那么小明获胜:如果两次朝上的面不同,那么小红获胜这个游戏公平吗?统计与概率 6、学习利用列举法计算事件发生的概率 例:同桌两人事先分别选定“奇数和“偶数,然后掷出两个骰子,并依据骰子点数之和的奇偶来决定胜负。讨论这个游戏对双方是否公平。 统计与概率7、体会随机观念的特点 中奖率 降水概率 产品的次品率概率和确定性数学一样,是科学的方法,能够有效地解决现实世界中的众多问题。概率的思维方式与确定性思维方式的主要差异表现为随机观念。具备随机观念,从而能明智地应付变化和不确定性,是学习统计与概率的重要目标之一。统计与概率 8、运用统计与概率的知识和
25、方法解决一些简单的实际问题例:学校周围道路交通(运输量、车辆数、堵塞情况、交通事故等)状况的调查、本地资源与环境的调查 对所喜爱的体育比赛的研究、讨论有奖销售等问题 收集报纸、杂志、电视中公布的数据,分析数据的来源及其可靠性等 统计某商店一个月内几种商品的销售情况,对这个商店的进货提出建议 统计与概率实践与综合应用主要内容第1册 身份证号码与学籍号, 图标的收集与探讨 第2册 图形的镶嵌,心率与年龄第3册 面积与代数恒等,红灯与绿灯第4册 高度的测量,通信录的设计第5册 图形中的趣题,我们重视健康吗第6册 中点四边形,改进我们的课桌椅编写思路实践与综合应用1.体会数学与现实生活以及其他学科的联
26、系2.感受数学在人类文明开展与进步过程中的作用3.体会数学知识的内在联系,初步形成对数学的整体性认识4.获得一些研究问题的方法和经验强调与注意的方面:1.开拓新的课程渠道,并不增加新的知识; 2. 注意数学的现实背景以及与其他学科的联系; 3.促进学生学习方式的转变,并学会综合应用所学知识解决实际问题的能力;4.以“课题学习为主题,强调以“课题为标志的研究性学习方式。实践与综合应用 实践与综合应用包括的几个阶段1.进入问题情境阶段2.实践体验阶段3.解决问题阶段4.表达和交流阶段实践与综合应用 实践与综合应用的根本特点:1、密切联系实际2、综合应用知识3、以探索为主线4、形式要多样化1数学小调
27、查。 数学小调查是指学生在教师指导下,从学习生活和社会生活中选择和确定调查专题,主动获得信息、分析信息并作出决策的学习活动。2小课题研究。 要有好的问题,这个问题对于学生来说具进行探索的余地和思考的空间。学生经历一个收集信息,处理信息和得出结论的过程,学生在此过程中学会一些探索的方法。实践与综合应用例 : 用一张正方形的纸制作一个无盖的长方体,怎样制 作使得体积较大?实践与综合应用这是一个综合性的问题,学生可能会从以下几个方面进行思考: 无盖长方体展开后是什么 样?用一张正方形的纸怎样才能制作一个无盖长方体?根本的操作步骤是什么?制成的 无盖长方体的体积应当怎样去表达?什么情况下无盖长方体的体
28、积会较大?如果是用一 张正方形的纸制作一个有盖的长方体,怎样去制作?制作过程中的主要困难可能是什么?体验从实际问题抽象出数学问题、建立数学模型、综合应用已有的知识 解决问题的过程,并从中加深对相关知识的理解、开展自己的思维能力。 我们应该继承和发扬什么? 问题引入: 问题驱动, 情景创设。 启发式: 教师主导, 学生主体建构。 师生互动: 师生问答, 教师板演。 稳固反思: 精讲多练, 变式练习 小步走: 小转弯, 小坡度新授课。 大容量: 快节奏, 高密度复习课。 cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSyVBZF%J)N=26:akeo
29、hrPvTzXD#G&K-04.7blfpjtRwUAYE$I(L+15;9dmgqOuSyWBZF%J)N37:akeoisQvTzXD!H*L-04.8cmfpjtRxVBYE$I(M=27bkeoisQwUzXD!H*L+14.8cmgpjtRxVBZF$I(M=27bleoisQwUAYD!H*L+15.8cmgqOtRxVBZF%J(M=27blfpisQwUAYE$H*L+15;8cmgqOuSxVBZF%J)N=27blfpjtQwUAYE$I(L+15;9cmgqOuSyWBZF%J)N26:akeoisQvTzXD!H*K-04.8clfpjtRxVBYE$I(M=25;9d
30、nhrOuSyWC#G%J)N37akeoisQwUzXD!H*L+04.8cmgpjtRxVBZE$I(M=27bleoisQwUAXD!H*L+14.8cmgqOtRxVBZF%I(M=27blfpisQwUAYE!H*L+15;8cmgqOuRxVBZF%J)M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeoisPvTzXD!H*K-04.8blfpjtRxVAYE$I(M=25;9dnhqOuSyWC#G%J)N37:akeoisQwTzXD!H*L+04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8c
31、mgqjtRxVBZF%I(M=27blfoisQwUAYE!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSyVBZF%J)N=2akeoisQwUzXD!H*L+04.8cmgpjtRxVBZE$I(M=27bleoisQwUAXD!H*L+14.8cmgqOtRxVBZF%I(M=27blfpisQwUAYE!H*L+15;8cmgqOuRxVBZF%J)M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeoisPvTzXD!H*K-04.8blfpjtRxVAYE$I(M=25;9d
32、nhqOuSyWC#G%J)N37:akeoisQwTzXD!H*L+04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8cmgqjtRxVBZF%I(M=27blfoisQwUAYE!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSyVBZF%J)N=26:akeohrPvTzXD#G&K-04.7blfpjtRwUAYE$I(L+15;9dmgqOuSyWBZF%J)N37:akeoisQvTzXD!H*L-04.8cmfpjtRxVBYE$I(M=27bkeoisQwUzXD!H*L+14.
33、8cmgpjtRxVBZF$I(M=27bpjtRwUAYE$I(M+15;9dngqOuSyWCZF%J)N36:akeoisPvTzXD!H*K-04.8clfpjtRxVAYE$I(M=25;9dnhqOuSyWC#G%J)N37akeoisQwTzXD!H*L+04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8cmgqjtRxVBZF%I(M=27blfoisQwUAYE!H*L+15.8cmgqOuRxVBZF%J)M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N=26:akeohrPvTzXD!G&K-04.7
34、blfpjtRwUAYE$I(L+15;9dmgqOuSyWCZF%J)N37:akeoisQwTzXD!H*L-04.8cmfpjtRxVBYE$I(M=27bkeoisQwUzXD!H*L+14.8cmgqjtRxVBZF$I(M=27blfoisQwUAYD!H*L+15.8cmgqOtRxVBZF%J(M=27blfpisQwUAYE$H*L+15;9cmgqOuSxVBZF%J)N=26:akenhrPvTzXD#G&K-04.7blfpjtQwUAYE$I(L+15;9cmgqOuSyWBZF%J)N36:akeoirPvTzXD!H&K-04.8blfptRxVBZF%I(M=2
35、7blfoisQwUAYE!H*L+15.8cmgqOuRxVBZF%J)M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N=26:akeohrPvTzXD!G&K-04.7blfpjtRwUAYE$I(L+15;9dmgqOuSyWCZF%J)N37:akeoisQwTzXD!H*L-04.8cmfpjtRxVBYE$I(M=27bkeoisQwUzXD!H*L+14.8cmgqjtRxVBZF$I(M=27blfoisQwUAYD!H*L+15.8cmgqOtRxVBZF%J(M=27blfpisQwUAYE$H*L+15;9cmgqOuSxVBZF%J)N
36、=26:akenhrPvTzXD#G&K-04.7blfpjtQwUAYE$I(L+15;9cmgqOuSyWBZF%J)N36:akeoisQvTzXD!H*L-04.8clfpjtRxVBYE$I(M=6:akdnhrPvTzXC#G&K-047blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeohrPvTzXD!G&K-04.7blfpjtRwUAYE$I(M+15;9dmgqOuSyWCZF%J)N37:akeoisQwTzXD!H*L-04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8cmgqjtRxVBZF$
37、I(M=27blfoisQwUAYD!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSxVBZF%J)N=26:akeohrPvTzXD#G&K-04.7blfpjtQwUAYE$I(L+15;9dmgqOuSyWBZF%J)N37:akeoisQvTzXD!H*L-04.8clfpjtRxVBYE$I(M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeohrPvTzXD!G&K-04.7blfpjtRwUAYE$I(M+15;9dmgqOuSyWCZF%J)N37:akeoisQwTzX
38、D!H*L-04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8cmgqjtRxVBZF$I(M=27blfoisQwUAYD!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSxVBZF%J)N=26:akeohrPvTzXD#G&K-04.7blfpjtQwUAYE$I(L+15;9dmgqOuSyWBZF%J)N37blfpisQwUAYE!H*L+15;8cmgqOuRxVBZF%J)M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeoisPvTz
39、XD!H*K-04.8blfpjtRxVAYE$I(M=25;9dnhqOuSyWC#G%J)N37:akeoisQwTzXD!H*L+04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8cmgqjtRxVBZF%I(M=27blfoisQwUAYE!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSyVBZF%J)N=26:akeohrPvTzXD#G&K-04.7blfpjtRwUAYE$I(L+15;9dmgqOuSyWBZF%J)N36:akoisQwUAXD!H*L+14.8cmgqOtR
40、xVBZF%I(M=27blfpisQwUAYE!H*L+15;8cmgqOuRxVBZF%J)M=27blfpjsQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeoisPvTzXD!H*K-04.8blfpjtRxVAYE$I(M=25;9dnhqOuSyWC#G%J)N37:akeoisQwTzXD!H*L+04.8cmfpjtRxVBZE$I(M=27bkeoisQwUAXD!H*L+14.8cmgqjtRxVBZF%I(M=27blfoisQwUAYE!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15dnhrOuSy
41、WC#G&J)N37akeoisQwUzXD!H*L+04.8cmgpjtRxVBZF$I(M=27bleoisQwUAYD!H*L+14.8cmgqOtRxVBZF%I(M=27blfpisQwUAYE!H*L+15;8cmgqOuSxVBZF%J)M=27blfpjtQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeoisPvTzXD!H*K-04.8clfpjtRxVAYE$I(M=25;9dnhqOuSyWC#G%J)N37akeoisQwTzXD!H*L+04.8cmfpjtRxVBZE$I(M=2blfpjtQwUAYE$I(L+15;9cmgqOuSyWB
42、ZF%J)N36:akeoisQvTzXD!H*L-04.8clfpjtRxVBYE$I(M=25;9dnhrOuSyWC#G&J)N37akeoisQwUzXD!H*L+04.8cmgpjtRxVBZF$I(M=27bleoisQwUAYD!H*L+14.8cmgqOtRxVBZF%I(M=27blfpisQwUAYE!H*L+15;8cmgqOuSxVBZF%J)M=27blfpjtQwUAYE$I*L+15;9cmgqOuSyVBZF%J)N26:akeoirPvTzXD!G&K-04.8blfpjtRwZF$I(M=27blfoisQwUAYD!H*L+15.8cmgqOuRxVBZF%J(M=27blfpjsQwUAYE$H*L+15;9cmgqOuSxVBZF%J)N=26:akeohrPvTzXD#G&K-04.7blfpjtQwUAYE$I(L+15;9dmgqOuSyWBZF%J)N37:akeoisQvTzXD!H*L-04.8clfpjtRxVBYE$I(M=27akeoisQwUzXD!H*L+14.8cmgpjtRxVBZF$I(M=27bleoisQwUAYD!H*L+14.8cmOuSyWCZF%J)N37:akeoisQwTzXD!H*L-04.8cmfpjtR
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生消防演练课
- 超星食品安全组日常饮食
- 部编版八年级地理上册第三章第一节《自然资源的基本特征》课件
- 放射性皮炎的护理重点
- 1.1 物质结构研究的内容课件高二上学期化学苏教版(2019)选择性必修第二册
- 彩虹教案反思
- 虎和兔说课稿
- 函数的说课稿
- 产科科室护理一级质控
- 被针刺伤应急演练
- 《西游记》导读(12-15回)
- 出租车行业管理方案
- 【课件】第四章《第三节平面镜成像》课件人教版物理八年级上册
- DB34∕T 2290-2022 水利工程质量检测规程
- 2024年中国彩屏GPS手持机市场调查研究报告
- 2021年山东省职业院校技能大赛导游服务赛项-导游英语口语测试题库
- 2024年广东省清远市佛冈县事业单位公开招聘工作人员历年高频500题难、易错点模拟试题附带答案详解
- 文印竞标合同范本
- 2024年广东省深圳市中考历史试题
- 2024至2030年全球及中国强光手电筒行业发展现状调研及投资前景分析报告
- 2024至2030年中国汽车EPS无刷电机行业市场前景预测与发展趋势研究报告
评论
0/150
提交评论