版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点对称C图象关于直线对称,在上的最小值为1D最小正周期为,在有两个根2已知,若方程有唯一解,则实数的取值范围是( )ABCD3直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A10B9C8D74函数的值域为( )ABCD5我国古代数学巨著九章算术中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共
3、织布尺,则这位女子织布的天数是( )A2B3C4D16宁波古圣王阳明的传习录专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )ABCD7已知函数,若,则的最小值为( )参考数据:ABCD8执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD9已知双曲线:的左右焦点分别为,为双曲线上一点,为双曲线C渐近线上一点,均位于第一象限,且,则双曲线的离心率为( )ABCD10设函数恰有两个极值点,则实数的取值范围是( )ABCD11函
4、数图像可能是( )ABCD12已知,函数在区间上恰有个极值点,则正实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13直线是曲线的一条切线为自然对数的底数),则实数_.14若正实数x,y,满足x+2y=5,则x2-3x+1+2y2-1y的最大值是_15若椭圆:的一个焦点坐标为,则的长轴长为_16函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,均为正项数列,其前项和分别为,且,当,时,.(1)求数列,的通项公式;(2)设,求数列的前项和.18(12分)如图,在直角梯形中,
5、为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).()证明:平面平面垂直;()是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.19(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.20(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概
6、率附表及公式:21(12分)在平面直角坐标系中,直线的参数方程为 (为参数)在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值22(10分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.参考答案一、选择题:本题共12小题,每小题5分,共60
7、分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综
8、合应用,属于中档题.2B【解析】求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可【详解】解:令,则,则,故,如图示:由,得,函数恒过,由,可得,若方程有唯一解,则或,即或;当即图象相切时,根据,解得舍去),则的范围是,故选:【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题3B【解析】根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知 所以 因为 为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及
9、其简单应用,基本不等式的用法,属于中档题4A【解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.5B【解析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,求的值因为,解得,解得故选B【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.6B【解析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事
10、件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.7A【解析】首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,令,解得,所以,且,化简得,所以,构造函数,.构造函数,所以在区间上递减,而,所以存在,使.所以
11、在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A【点睛】本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方法,属于难题.8B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.9D【解
12、析】 由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,设,则,解得,即,代入双曲线的方程可得,解得,故选D点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围)10C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确
13、定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.11D【解析】先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶
14、性,识别函数的图象,属于中档题.12B【解析】先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,再建立不等式求出的范围,进而求得的范围.【详解】解: 令,解得对称轴,又函数在区间恰有个极值点,只需 解得故选:【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方
15、程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.1483【解析】分析:将题中的式子进行整理,将x+1当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.详解:x2-3x+1+2y2-1y=(x+1)2-2(x+1)-2x+1+2y-1y=x+1-2+2y-(2x+1+1y)=x+2y-1-16(2x+1+1y)(x+1+2y)=4-16(2+2+4yx+1+x+1y)4-16(4+24)=83,当且仅当2y=x+1=3等号成立,故答案是83.
16、点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-相乘,即可得结果.15【解析】由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或 由表示的是椭圆,则,所以,则椭圆方程为 所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对 的两个值进行取舍.16 【解析】直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综
17、合应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),(2)【解析】(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,即可求得数列的前项和.【详解】(1)因为,所,两式相减,整理得,当时,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,即.【点睛】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给关系合理变形,发现其中的关系,裂项求和作为一类常用的求和方法,需要在平常的学习中多做积累常见的裂
18、项方式.18()见解析 ()存在,此时为的中点.【解析】()证明平面,得到平面平面,故平面平面,平面,得到答案.()假设存在点满足题意,过作于,平面,过作于,连接,则,过作于,连接,是二面角的平面角,设,计算得到答案.【详解】(),平面.又平面,平面平面,而平面,平面平面,由,知,可知平面,又平面,平面平面.()假设存在点满足题意,过作于,由知,易证平面,所以平面,过作于,连接,则(三垂线定理),即是二面角的平面角,不妨设,则,在中,设(),由得,即,得,依题意知,即,解得,此时为的中点.综上知,存在点,使得二面角的余弦值,此时为的中点.【点睛】本题考查了面面垂直,根据二面角确定点的位置,意在
19、考查学生的空间想象能力和计算能力,也可以建立空间直角坐标系解得答案.19(1) (2)证明见解析【解析】(1)求出的导数,根据导函数的性质判断函数的单调性,再利用函数单调性解函数型不等式;(2)构造函数,利用导数判断在区间上单调递减,结合可得结果.【详解】(1)若,则.设,则,所以在上单调递减,在上单调递增.又当时,;当时,;当时,所以所以在上单调递增,又,所以不等式的解集为.(2)设,再令,在上单调递减,又,.即【点睛】本题考查利用函数的导数来判断函数的单调性,再利用函数的单调性来解决不等式问题,属于较难题.20有的把握认为顾客购物体验的满意度与性别有关;.【解析】由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关获得了元购物券的人中男顾客有人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑工程公司与施工方分包合同
- 2024年庆典花卉租赁合同
- 2024年度环保设备生产与安装合同
- 2024年企业间关于虚拟现实技术研发合同
- 2024年度BIM模型能耗分析与优化服务合同
- 2024国有林业企业与农村集体组织土地承包合同
- 2024年家庭遗产分配协议
- 2024年度金融科技合作协议
- 2024酒店布草采购合同
- 2024年度离婚财产分配合同:涉及三个未成年子女的抚养权
- 好看的皮囊千篇一律有趣的灵魂万里挑一
- 桩基晚上施工方案
- 电梯安全质量管理体系建立
- 工厂改造施工方案
- 初中英语新课程标准词汇表
- 《春节的文化与习俗》课件
- 手机棋牌平台网络游戏商业计划书
- 学校体育与社区体育融合发展的研究
- 医疗机构高警示药品风险管理规范(2023版)
- 一年级体质健康数据
- 八年级物理(上)期中考试分析与教学反思
评论
0/150
提交评论