版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )ABC
2、D2已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD3已知的部分图象如图所示,则的表达式是( )ABCD4设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为( )ABC5D65盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( )ABCD6过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD7一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )ABCD8已知为锐
3、角,且,则等于( )ABCD9设函数是奇函数的导函数,当时,则使得成立的的取值范围是( )ABCD10已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD11已知正四面体外接球的体积为,则这个四面体的表面积为( )ABCD12数列满足,且,则( )AB9CD7二、填空题:本题共4小题,每小题5分,共20分。13若满足约束条件,则的最大值为_14双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为_,离心率为_.15将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为_.16已知正实数满足,则的最小值为 三、解答题:共70
4、分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位已知曲线C的极坐标方程为2cos ,直线l的参数方程为 (t为参数,为直线的倾斜角)(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角的大小18(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.19(12分)已知正实数满足 .(1)求 的最小值.(2)证明:20(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程
5、为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。(1)写出直线l的普通方程和曲线C的直角坐标方程:(2)若成等比数列,求a的值。21(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.22(10分) 选修4-4:极坐标与参数方程 在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只
6、有一项是符合题目要求的。1B【解析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题2C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查
7、利用函数的单调性比较大小,还考查化简能力和转化思想.3D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.4A【解析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,
8、右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.5C【解析】先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概
9、率关系,意在考查数学建模、数学计算能力,属于基础题.6D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.7B【解析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数
10、据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.8C【解析】由可得,再利用计算即可.【详解】因为,所以,所以.故选:C.【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.9D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x(0,1)时,g(x)0,lnx0,f(x)0;当x(1,+)时,g(x)0,f(x)0,(x2-1)f(x)0,(x2-1)f(x)0,(x2-1)f(x)0.综上所述,使得(x2-1)f(x)0成立
11、的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效10C【解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关
12、系,即可求得的取值范围.【详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.11B【解析】设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得因为正四面体AB
13、CD的外接球和正方体的外接球是同一个球,则有, 而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为故选:B【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题12A【解析】先由题意可得数列为等差数列,再根据,可求出公差,即可求出【详解】数列满足,则数列为等差数列,故选:【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题二、填空题:本题共4小题,每小题5分,共20分。134【解析】作出可行域如图所示:由,解得
14、.目标函数,即为,平移斜率为-1的直线,经过点时,.142 2 【解析】设双曲线的右焦点为,根据周长为,计算得到答案.【详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.【点睛】本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.15【解析】由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,
15、考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.164【解析】由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)当 时,直线l方程为x1;当 时,直线l方程为y(x1)tan; x2y22
16、x (2)或.【解析】(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件0,即可求解.【详解】(1)当时,直线l的普通方程为x1;当时,消去参数得直线l的普通方程为y(x1)tan .由2cos ,得22cos ,所以x2y22x,即为曲线C的直角坐标方程(2)把x1tcos ,ytsin 代入x2y22x,整理得t24tcos 30.由16cos2120,得cos2,所以cos 或cos ,故直线l的倾斜角为或.【点睛】本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关
17、系,属于中档题.18(1)见解析;(2)【解析】(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.19(1);(2)见解析【解析】(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式及乘“1”法,证明即可.【详解】(1)因为 ,所以 因为 ,所以 (当
18、且仅当 ,即 时等号成立),所以(2)证明:因为 ,所以 故 (当且仅当 时,等号成立)【点睛】本题考查了基本不等式的应用,考查了乘“1”法的技巧,考查了推理论证能力,属于中档题.20(1)l的普通方程;C的直角坐标方程;(2).【解析】(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2)将直线的参数方程,代入曲线的方程,利用参数的几何意义即可得出,从而建立关于的方程,求解即可【详解】(1)由直线l的参数方程消去参数t得,,即为l的普通方程由,两边乘以得 为C的直角坐标方程.(2)将代入抛物线得由已知成等比数列,即,整理得 (舍去)或.【点睛】熟练掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滨州学院《曲式》2023-2024学年第一学期期末试卷
- 滨州学院《材料与工艺》2023-2024学年第一学期期末试卷
- 毕节职业技术学院《商务英语阅读3》2023-2024学年第一学期期末试卷
- 毕节医学高等专科学校《应用物理化学实验》2023-2024学年第一学期期末试卷
- 北京中医药大学东方学院《中国古代建筑与风水地理》2023-2024学年第一学期期末试卷
- 2025年度茶叶包装设计与生产定制合同3篇
- 三方代理合同定稿
- 2025版预拌砂浆研发与技术转让合同3篇
- 委托养羊合同
- 2025版虚拟现实技术应用与开发技术服务合同3篇
- 河道汛期施工防洪防汛应急预案
- 汉语教程我听过钢琴协奏曲黄河课件
- 二氧化碳充装流程
- 12m跨钢栈桥设计计算
- 电路板类英语词汇
- DES算法Matlab代码
- 沙特的矿产资源开发概况及其商机
- 高一生物必修一期末试题(附答案)
- 安全事故应急响应程序流程图(共1页)
- 三年级_上册牛津英语期末试卷
- 损伤容限设计基本概念原理和方法PPT课件
评论
0/150
提交评论