版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1数列an是等差数列,a11,公差d1,2,且a4+a10+a1615,则实数的最大值为()ABCD2党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD3在中,则边上的高为( )AB2CD4已知,则( )ABC3D45如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则
3、双曲线的离心率是( ).ABCD6双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )A3BC6D7如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD8已知函数,存在实数,使得,则的最大值为( )ABCD9已知,且,则( )ABCD10已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )ABCD11已知满足,则的取值范围为( )ABCD12一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异
4、的实根,则实数a的取值范围为_.14在的展开式中,的系数为_用数字作答15已知,复数且(为虚数单位),则_,_16某学校高一、高二、高三年级的学生人数之比为,现按年级采用分层抽样的方法抽取若干人,若抽取的高三年级为12人,则抽取的样本容量为_人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数 , (1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围18(12分)已知曲线的参数方程为 为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标
5、方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.19(12分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,求数列的前项和.20(12分)已知函数,.(1)求证:在区间上有且仅有一个零点,且;(2)若当时,不等式恒成立,求证:.21(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.()若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;()若直线的斜率存在且不为0,四边形为平行四边形,求证:;()在()的条件下,判断四边形能否为矩形,说明理由.22(10分)已知数列的前项和为,.(1)求数列的通项
6、公式;(2)若,为数列的前项和.求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】利用等差数列通项公式推导出,由d1,2,能求出实数取最大值【详解】数列an是等差数列,a11,公差d1,2,且a4+a10+a1615,1+3d+(1+9d)+1+15d15,解得,d1,2,2是减函数,d1时,实数取最大值为故选D【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题2D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共
7、享经济对该部门的发展有显著效果,故选D3C【解析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.4A【解析】根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.5C【解析】易得,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四
8、边形,所以,又,故,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.6A【解析】根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.7B【解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所
9、在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.8A【解析】画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,在,故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.9B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的
10、过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.10B【解析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.11C【解析】设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不
11、等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键对于直线斜率要注意斜率不存在的直线是否存在12B【解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.二、填空题:本题共
12、4小题,每小题5分,共20分。13【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数
13、零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题141【解析】利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数【详解】二项展开式的通项为 令得的系数为 故答案为1【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具15 【解析】复数且,故答案为,16【解析】根据分层抽样的定义建立比例关系即可得到结论.【详解】设抽取的样本为,则由题意得,解得.故答案为:【点睛】本题考查了分层抽样的知识,算出抽样比是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)单调增区
14、间,单调减区间为,;(2)有2个零点,证明见解析;(3)【解析】对函数求导,利用导数的正负判断函数的单调区间即可;函数有2个零点.根据函数的零点存在性定理即可证明;记函数,求导后利用单调性求得,由零点存在性定理及单调性知存在唯一的,使,求得为分段函数,求导后分情况讨论:当时,利用函数的单调性将问题转化为的问题;当时,当时,在上恒成立,从而求得的取值范围.【详解】(1)由题意知,,列表如下:02 0 极小值 极大值 所以函数的单调增区间为,单调减区间为,. (2)函数有2个零点.证明如下: 因为时,所以,因为,所以在恒成立,在上单调递增,由,且在上单调递增且连续知,函数在上仅有一个零点,由(1)
15、可得时,,即,故时,所以,由得,平方得,所以,因为,所以在上恒成立,所以函数在上单调递减,因为,所以,由,且在上单调递减且连续得在上仅有一个零点,综上可知:函数有2个零点. (3)记函数,下面考察的符号求导得当时恒成立当时,因为,所以在上恒成立,故在上单调递减,又因为在上连续,所以由函数的零点存在性定理得存在唯一的,使, ,因为,所以 因为函数在上单调递增,所以在,上恒成立当时,在上恒成立,即在上恒成立记,则,当变化时,变化情况如下表: 极小值 ,故,即当时,当时,在上恒成立综合(1)(2)知, 实数的取值范围是【点睛】本题考查利用导数求函数的单调区间、极值、最值和利用零点存在性定理判断函数零
16、点个数、利用分离参数法求参数的取值范围;考查转化与化归能力、逻辑推理能力、运算求解能力;通过构造函数,利用零点存在性定理判断其零点,从而求出函数的表达式是求解本题的关键;属于综合型强、难度大型试题.18(1),表示圆心为,半径为的圆;(2)【解析】(1)根据参数得到直角坐标系方程,再转化为极坐标方程得到答案.(2)直线方程为,计算圆心到直线的距离加上半径得到答案.【详解】(1),即,化简得到:.即,表示圆心为,半径为的圆.(2),即,圆心到直线的距离为.故曲线上的点到直线的最大距离为.【点睛】本题考查了参数方程,极坐标方程,直线和圆的距离的最值,意在考查学生的计算能力和应用能力.19(1);(
17、2)【解析】(1)当时,利用可得,故可利用等比数列的通项公式求出的通项.(2)利用分组求和法可求数列的前项和.【详解】(1)当时,所以,当时,所以,即,又因为,故,所以,所以是首项,公比为的等比数列,故.(2)由得:数列为等差数列,公差, .【点睛】本题考查数列的通项与求和,注意数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.20(1)详见解析;(2)详见解析.【解析】(1)利用求导数,判断在区间上的单调性,然后
18、再证异号,即可证明结论;(2)当时,不等式恒成立,分离参数只需时,恒成立,设(),需,根据(1)中的结论先求出,再构造函数结合导数法,证明即可.【详解】(1),令,则,所以在区间上是增函数,则,所以在区间上是增函数.又因为,所以在区间上有且仅有一个零点,且.(2)由题意,在区间上恒成立,即在区间上恒成立,当时,;当时,恒成立,设(),所以.由(1)可知,使,所以,当时,当时,由此在区间上单调递减,在区间上单调递增,所以.又因为,所以,从而,所以.令,则,所以在区间上是增函数,所以,故.【点睛】本题考查导数的综合应用,涉及到函数的单调性、函数的零点、极值最值、不等式的证明,分离参数是解题的关键,意在考查逻辑推理、数学计算能力,属于较难题.21 () ;()证明见解析;()不能,证明见解析【解析】()计算得到故,计算得到面积.() 设为,联立方程得到,计算,同理,根据得到,得到证明.() 设中点为,根据点差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省普通高中2024-2025学年高二上学期期末考试语文试题(含答案)
- 2025年炼油、化工生产专用设备项目建议书
- 2025年全自动精密贴片机项目建议书
- 第21课 敌后战场的抗战(分层作业)(解析版)
- 酿酒厂铲车租赁合同
- 垃圾处理瓦工施工合同范本
- 仓储物流派遣服务方案
- 建筑工程施工合同:城市道路工程
- 历史建筑保护塔吊施工协议
- 员工招聘与选拔流程
- 三级安全教育试题(公司级、部门级、班组级)
- 2024年金融工作会议
- 2024年人教版八年级生物上册期末考试卷(附答案)
- 2024年叉车租赁合同经典版(四篇)
- 环保工程施工安全检查表
- 人教版五年级上册数学期末考试试卷含答案
- 小学科学青岛版(六三制)六年级上册全册教案(共25课)(2022秋)
- 2024焊接工艺规程
- 外研版(2024新版)七年级上册英语期末复习Unit1~6共6套学业质量检测试卷汇编(含答案)
- 药理学期末试卷
- 小学高年级课后服务 scratch3.0编程教学设计 一阶第27课 植物大战僵尸-僵尸来袭教学设计
评论
0/150
提交评论