山东省德州市第五中学2021-2022学年中考二模数学试题含解析_第1页
山东省德州市第五中学2021-2022学年中考二模数学试题含解析_第2页
山东省德州市第五中学2021-2022学年中考二模数学试题含解析_第3页
山东省德州市第五中学2021-2022学年中考二模数学试题含解析_第4页
山东省德州市第五中学2021-2022学年中考二模数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知一次函数y(k2)x+k不经过第三象限,则k的取值范围是()Ak2Bk2C0k2D0k22如图,ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则BAD的度数为( )A65B60C55D453如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40,则图中1的度数为( )A115B120C130D1404下列图形中是轴对称图形但不是中心对称图形的是()ABCD5如图所示是放置在正方形网格中的一个 ,

3、则的值为( )ABCD6在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差7已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D38若正六边形的半径长为4,则它的边长等于( )A4B2CD9如图,在ABC中,B46,C54,AD平分BAC,交BC于D,DEAB,交AC于E,则CDE的大小是()A40B43C46D5410如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形DECB,若DEBC,四边

4、形DECB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD二、填空题(共7小题,每小题3分,满分21分)11现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_12如图,将直尺与含30角的三角尺摆放在一起,若1=20,则2的度数是_.13因式分解:a2a_14中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,观察图,可推算图中所得的数值为_15已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形

5、的面积为_16已知实数m,n满足,且,则= 17一个多边形的每个内角都等于150,则这个多边形是_边形三、解答题(共7小题,满分69分)18(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?19(5分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减

6、少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?20(8分)如图,ABC是等腰直角三角形,且AC=BC,P是ABC外接圆O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD(1)求证:PCBD;(2)若O的半径为2,ABP=60,求CP的长;(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,

7、请给出证明21(10分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)22(10分)如图,把EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EPFP4,EF4,BAD60,且AB4(1)求EPF的大小;(2)若AP=6,求AEAF的值.23(12分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点求此抛物线的解析式;求C、D两

8、点坐标及BCD的面积;若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.24(14分)如图1,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan,即ctan角的邻边角的对边ACBC,根据上述角的余切定义,解下列问题:(1)如图1,若BC3,AB5,则ctanB_;(2)ctan60_;(3)如图2,已知:ABC中,B是锐角,ctan C2,AB10,BC20,试求B的余弦cosB的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例

9、函数,k=0当经过第一、二、四象限时, ,解得0k2,综上所述,0k2。故选D2、A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到C=DAC,求得DAC=30,根据三角形的内角和得到BAC=95,即可得到结论【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故C=DAC,C=30,DAC=30,B=55,BAC=95,BAD=BAC-CAD=65,故选A【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键3、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB,

10、B=B=902=40,CFB=50,1+EFBCFB=180,即1+150=180,解得:1=115,故选A4、C【解析】分析:根据轴对称图形与中心对称图形的概念求解详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误故选:C点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、D【解析】首先过点A向CB引垂线,与CB交于D

11、,表示出BD、AD的长,根据正切的计算公式可算出答案【详解】解:过点A向CB引垂线,与CB交于D,ABD是直角三角形, BD=4,AD=2,tanABC= 故选:D【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做A的正切,记作tanA6、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键7、B【解析】把代入方程组得:,解得:,所以a2b=2()=2.故选B.8、A【解析】试题分析:正六边形的中心角为360

12、6=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1故选A考点:正多边形和圆9、C【解析】根据DEAB可求得CDEB解答即可【详解】解:DEAB,CDEB46,故选:C【点睛】本题主要考查平行线的性质:两直线平行,同位角相等快速解题的关键是牢记平行线的性质10、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题(共7小题,每小题3分,满分21分)11、【解析】科学记数法

13、的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为,故答案为:【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、50【解析】先根据三角形外角的性质求出BEF的度数,再根据平行线的性质得到2的度数【详解】如图所示:BEF是AEF的外角,1=20,F=30,BEF=1+F=50,ABCD,2=BEF=50,故答案是:50【点睛】考查了平行线的性质,解题的关键是掌握、

14、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和)13、a(a1)【解析】直接提取公因式a,进而分解因式得出答案【详解】a2aa(a1)故答案为a(a1)【点睛】此题考查公因式,难度不大14、【解析】试题分析:根据有理数的加法,可得图中表示(+2)+(5)=1,故答案为1考点:正数和负数15、1【解析】试题解析:如图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2OA=6,这个菱形的面积为:ACBD=68=116、【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解试题解析:时,则m,n是方程3x26x5=0的两

15、个不相等的根,原式=,故答案为考点:根与系数的关系17、1【解析】根据多边形的内角和定理:180(n-2)求解即可【详解】由题意可得:180(n-2)=150n,解得n=1故多边形是1边形三、解答题(共7小题,满分69分)18、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解

16、得:x=2或x=(不合题意,舍去)答:人行道的宽为2米19、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50 x(3)每件商品降价1元时,商场日盈利可达到2000元【解析】(1)根据“盈利=单件利润销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值【详解】(1)当天盈利:(50-3)(30+23)=1692(元)答:若某天

17、该商品每件降价3元,当天可获利1692元(2)每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元故答案为2x;50-x(3)根据题意,得:(50-x)(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,商城要尽快减少库存,x=1答:每件商品降价1元时,商场日盈利可达到2000元【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式)20、(1)证明见解析;(2)+;(3)的值不变,.【解析】(1)根据等腰三角形的性质得到ABC=45,ACB=90,根据圆

18、周角定理得到APB=90,得到APC=D,根据平行线的判定定理证明;(2)作BHCP,根据正弦、余弦的定义分别求出CH、PH,计算即可;(3)证明CBPABD,根据相似三角形的性质解答【详解】(1)证明:ABC是等腰直角三角形,且AC=BC,ABC=45,ACB=90,APC=ABC=45,AB为O的直径,APB=90,PD=PB,PBD=D=45,APC=D=45,PCBD;(2)作BHCP,垂足为H,O的半径为2,ABP=60,BC=2,BCP=BAP=30,CPB=BAC=45,在RtBCH中,CH=BCcosBCH=,BH=BCsinBCH=,在RtBHP中,PH=BH=,CP=CH+

19、PH=+;(3)的值不变,BCP=BAP,CPB=D,CBPABD,=,=,即=【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键21、该雕塑的高度为(2+2)米【解析】过点C作CDAB,设CD=x,由CBD=45知BD=CD=x米,根据tanA=列出关于x的方程,解之可得【详解】解:如图,过点C作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米【点睛】本题主要考查解直

20、角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用22、(1)EPF120;(2)AEAF6.【解析】试题分析: (1)过点P作PGEF于G,解直角三角形即可得到结论;(2)如图2,过点P作PMAB于M,PNAD于N,证明ABCADC,RtPMERtPNF,问题即可得证.试题解析:(1)如图1,过点P作PGEF于G,PE=PF,FG=EG=EF=2,FPG=EPGEPF,在FPG中,sinFPG= ,FPG=60,EPF=2FPG=120;(2)如图2,过点P作PMAB于M,PNAD于N,四边形ABCD是菱形,AD=AB,DC=BC,DAC=BAC,PM

21、=PN,在RtPME于RtPNF中, ,RtPMERtPNF,FN=EM,在RtPMA中,PMA=90,PAM= DAB=30,AM=APcos30=3 ,同理AN=3 ,AE+AF=(AM-EM)+(AN+NF)=6.【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键23、 (1)y=(x1)2+4;(2)C(1,0),D(3,0);6;(3)P(1+,),或P(1,)【解析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标【详解】解:(1)、抛物线的顶点为A(1,4), 设抛物线的解析式y=a(x1)2+4,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论