g 第九章 主成分分析_第1页
g 第九章 主成分分析_第2页
g 第九章 主成分分析_第3页
g 第九章 主成分分析_第4页
g 第九章 主成分分析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 基本思想F1F1F2F2F3F3i ii it tF1F11 1F2F20 01 1F3F30 00 01 1i i0.9950.995-0.041-0.0410.0570.057l li i-0.056-0.0560.9480.948-0.124-0.124-0.102-0.102l lt t-0.369-0.369-0.282-0.282-0.836-0.836-0.414-0.414-0.112-0.1121 1 在力求数据信息丢失最少的原则下,对高维的变量空间降维,即研究指标体系的少数几个线性组合,并且这几个线性组合所构成的综合指标将尽可能多地保留原来指标变异方面的信息。这些综合指

2、标就称为主成分。要讨论的问题是:2 数学模型与几何解释 假设我们所讨论的实际问题中,有p个指标,我们把这p个指标看作p个随机变量,记为X1,X2,Xp,主成分分析就是要把这p个指标的问题,转变为讨论p个指标的线性组合的问题,而这些新的指标F1,F2,Fk(kp),按照保留主要信息量的原则充分反映原指标的信息,并且相互独立。ppppppppppXuXuXuFXuXuXuFXuXuXuF22112222112212211111 这种由讨论多个指标降为少数几个综合指标的过程在数学上就叫做降维降维。主成分分析通常的做法是,寻求原指标的线性组合Fi。 三、精度分析三、精度分析 1)贡献率贡献率:第i个主

3、成分的方差在全部方差中所占比重 ,称为贡献率 ,反映了原来P个指标多大的信息,有多大的综合能力 。piii1 2)累积贡献率:累积贡献率:前k个主成分共有多大的综合能力,用这k个主成分的方差和在全部方差中所占比重来描述,称为累积贡献率累积贡献率。piikii11 我们进行主成分分析的目的之一是希望用尽可能少的主成分F1,F2,Fk(kp)代替原来的P个指标。到底应该选择多少个主成分,在实际工作中,主成分个数的多少取决于能够反映原来变量80%以上的信息量为依据,即当累积贡献率80%时的主成分的个数就足够了。最常见的情况是主成分为2到3个。11),(iiFx 21 i 22i 22),(iiFxi

4、 925. 01383. 0*83. 52111111 u998. 05)924. 0(*22221112 u013(该题无公共因子)76.581.57675.871.78579.280.384.476.570.67367.668.178.5949487.589.59290.787.39181.58084.666.968.864.866.477.573.670.969.874.857.760.457.460.86585.668.57062.276.57069.271.764.968.9; 在正确评估了顾客的信用等级后,就能正确制定出对其的信用期、收帐政策等,这对于加强应收帐款的管理大有帮助。序

5、号序号1 12 23 34 45 56 67 78 89 91010得分得分3.163.1613.613.6- -9.019.0135.935.925.125.1-10.3-10.3- -4.364.36-33.8-33.8- -6.416.41-13.8-13.8排序排序4 43 37 71 12 28 85 510106 69 9例二例二基于相关系数矩阵的主成分分析。对美国纽约上市的有关化学产业的三个证券和石油产业的2个证券做了100周的收益率调查。下表是其相关系数矩阵。 1)利用相关系数矩阵做主成分分析。 2)决定要保留的主成分个数,并解释意义。10.5770.5090.00630.00370.57710.5990.3890.520.5090.59910.4360.4260.3870.3890.43610.5230.4620.3220.4260.5231六、六、 主成分分析的应用主成分分析的应用 2有时可通过因子负荷aij的结构,弄清X变量间的某些关系。 3. 多维数据的一种图形表示方法。我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。要把研究的问题用图形表示出来是不可能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论