版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是一个几何体的主视图和俯视图,则这个几何体是()A三棱柱B正方体C三棱锥D长方体2如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且AED=ACD,则AEC 度数为
2、 ( ) A75°B60°C45°D30°3如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将BDE沿DE翻折至B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()ABCD4如图,要使ABCD成为矩形,需添加的条件是()AAB=BCBABC=90°CACBDD1=25下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a66如图,M是ABC的边BC的中点,AN平分BAC,BNA
3、N于点N,且AB=10,BC=15,MN=3,则AC的长是()A12B14 C16D187下面的图形是轴对称图形,又是中心对称图形的有()A1个B2个C3个D4个8下列计算正确的是()Aa2a3a6B(a2)3a6Ca6a2a4Da5+a5a109如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A2.6m2B5.6m2C8.25m2D10.4m210的值是A
4、177;3B3C9D81二、填空题(共7小题,每小题3分,满分21分)11如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是_12举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选择_(填“甲” 或“乙”),理由是_13抛物线y=mx2+2mx+5的对称轴是直线_14如图, O是ABC的外接圆,AOB=70°,AB=AC,则ABC=_.
5、;15观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是_m.16已知平面直角坐标系中的点A (2,4)与点B关于原点中心对称,则点B的坐标为_17如图,在扇形OAB中,O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,OB上,则图中阴影部分的面积为_三、解答题(共7小题,满分69分)18(10分)如图,已知一次函数y=kx+b的图象与反比例函
6、数y=8x的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。 (1)求一次函数的解析式; (2)求AOB的面积。19(5分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30°,AC=4,求菱形OCED的面积20(8分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理(1)填空_,_,数学成绩的中位数所在的等级_(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级
7、学生的数学成绩的平均分数如下分数段整理样本等级等级分数段各组总分人数48435741712根据上表绘制扇形统计图21(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率22(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图请结合图
8、中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将两个统计图补充完整;(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生现从这5名学生中任意抽取2名学生请用画树状图或列表的方法,求出刚好抽到同性别学生的概率23(12分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图和图,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为 ,图中m的值为 ;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能
9、达标24(14分)如图,经过原点的抛物线y=x2+2mx(m0)与x轴的另一个交点为A,过点P(1,m)作直线PAx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP(I)当m=3时,求点A的坐标及BC的长;(II)当m1时,连接CA,若CACP,求m的值;(III)过点P作PEPC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C
10、,故选A【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答2、B【解析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出CME为等边三角形,进而即可得出AEC的值【详解】将圆补充完整,找出点E的位置,如图所示弧AD所对的圆周角为ACD、AEC,图中所标点E符合题意四边形CMEN为菱形,且CME=60°,CME为等边三角形,AEC=60°故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键3、B【解析】根据矩形的性质得到,CBx轴,ABy轴,于是得到D、E坐标,根据勾股定
11、理得到ED,连接BB,交ED于F,过B作BGBC于G,根据轴对称的性质得到BF=BF,BBED求得BB,设EG=x,根据勾股定理即可得到结论【详解】解:矩形OABC,CBx轴,ABy轴点B坐标为(6,1),D的横坐标为6,E的纵坐标为1D,E在反比例函数的图象上,D(6,1),E(,1),BE=6=,BD=11=3,ED=连接BB,交ED于F,过B作BGBC于GB,B关于ED对称,BF=BF,BBED,BFED=BEBD,即BF=3×,BF=,BB=设EG=x,则BG=xBB2BG2=BG2=EB2GE2,x=,EG=,CG=,BG=,B(,),k=故选B【点睛】本题考查了翻折变换(
12、折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键4、B【解析】根据一个角是90度的平行四边形是矩形进行选择即可【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90°,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B【点睛】本题主要应用的知识点为:矩形的判定 对角线相等且相互平分的四边形为矩形一个角是90度的平行四边形是矩形5、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、
13、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键6、C【解析】延长线段BN交AC于E.AN平分BAC,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=AB=10,BN=NE.又M是ABC的边BC的中点,CE=2MN=2×3=6,AC=AE+CE=10+6=16.故选C.7、B【解析】根据轴对称图形和中心对称图形的定义对各个图形进行逐
14、一分析即可【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;既是轴对称图形,又是中心对称图形的有两个,故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合8、B【解析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解【详解】A、a2a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2
15、a5,错误;故选B【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错9、D【解析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可【详解】经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,小石子落在不规则区域的概率为0.65,正方形的边长为4m,面积为16 m2设不规则部分的面积为s m2则=0.65解得:s=10.4故答案为:D【点睛】利用频率估计概率10、C【解析】试题解析: 的值是3 故选C.二、填空题(共7小题,每小题3分,满分21分)11、【解析】先求出黑色方砖在整个地面中
16、所占的比值,再根据其比值即可得出结论【详解】解:由图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=12、乙 乙的比赛成绩比较稳定 【解析】观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论【详解】观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;所以要选派一名选手
17、参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定 故答案为乙,乙的比赛成绩比较稳定【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好13、x=1【解析】根据抛物线的对称轴公式可直接得出.【详解】解:这里a=m,b=2m对称轴x=故答案为:x=-1.【点睛】解答本题关键是识记抛物线的对称轴公式x=.14、35°【解析】试题分析:AOB=70°,C=AOB=35°AB=AC,ABC=C=35°故答案为35°考点:圆周角定理15、135【解
18、析】试题分析:根据题意可得:BDA=30°,DAC =60°,在RtABD中,因为AB=45m,所以AD=m,所以在RtACD中,CD=AD=×=135m考点:解直角三角形的应用16、(2,4)【解析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解【详解】解:点A (2,-4)与点B关于原点中心对称,点B的坐标为:(-2,4)故答案为:(-2,4)【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键17、88 【解析】连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇
19、形OAB的面积,计算即可【详解】连接EF、OC交于点H,则OH=2,FH=OH×tan30°=2,菱形FOEC的面积=×4×4=8,扇形OAB的面积=8,则阴影部分的面积为88,故答案为88【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键三、解答题(共7小题,满分69分)18、(1)y=x+2;(2)6.【解析】(1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)令直线AB与y轴交点为D,求出点D
20、坐标,然后根据三角形面积公式进行求解即可得.【详解】(1)当x=2时,y=8x=4,当y=-2时,-2=8x,x=-4,所以点A(2,4),点B(-4,-2),将A,B两点分别代入一次函数解析式,得2k+b=4-4k+b=-2,解得:k=1b=2,所以,一次函数解析式为y=x+2;(2)令直线AB与y轴交点为D,则OD=b=2,SAOB=12ODxA+xB=12×2×2+4=6.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.19、(1)证明见解析;(1)【解析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出O
21、C=OD,根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半20、(1)6;8;B;(2)120人;(3)113分【解析】(1)根据表格中的数据和扇形统计图中的数据可以
22、求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数【详解】(1)本次抽查的学生有:(人),数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:(分),即A等级学生的数学成绩的平均分是113分【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答21、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因
23、此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)(2)用表格列出所有可能的结果: 第二次第一次红球1红球2白球黑球红球1(红球1,红球2)(红球1,白球)(红球1,黑球)红球2(红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能P(两次都摸到红球)=考点:概率统计22、 (1)50名;(2)补图见解析;(3)
24、 刚好抽到同性别学生的概率是【解析】试题分析:(1)由题意可得本次调查的学生共有:15÷30%;(2)先求出C的人数,再求出C的百分比即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案试题解析:(1)根据题意得: 15÷30%50(名)答;在这项调查中,共调查了50名学生;(2)图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是23、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有
25、2人体能达标【解析】分析:()根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可; ()根据平均数、众数、中位数的定义求解可得; ()总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得详解:()本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1 故答案为50、1; ()平均数为=5.16次,众数为5次,中位数为=5次; ()×350=2答:估计该校350名九年级男生中有2人体能达标点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据24、(I)4;(II) (III)(2,0)或(0,4)【解析】(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年外科手术治疗合同
- 二零二五年度高端住宅瓷砖定制铺贴合同4篇
- 2025年学生家教英语辅导合同
- 2025年度高性能外墙保温系统承包工程合同3篇
- 2025年度窗户安装与建筑一体化合同4篇
- 2025年屋顶油漆合同
- 业主物业服务合同完整版
- 2025版教育机构师资外包合同范本大全3篇
- 二零二四年度新能源公司能源供应合同2篇
- 二零二五版旅游电商平台合作推广合同4篇
- 洗浴部前台收银员岗位职责
- 2024年辅警考试公基常识300题(附解析)
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 暴发性心肌炎查房
- 口腔医学中的人工智能应用培训课件
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
- 数字媒体应用技术专业调研方案
评论
0/150
提交评论