版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在直角坐标系中,等腰直角ABO的O点是坐标原点,A的坐标是(4,0),直角顶点B在第二象限,等腰直角BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线
2、的解析式是()Ay=2x+1By=x+2Cy=3x2Dy=x+22如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()ABCD3如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD若AC=10cm,BAC=36,则图中阴影部分的面积为()ABCD4用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.AB与CBC与DCE与FDA与B5下列因式分解正确的是( )Ax2+9=(x+3)2Ba
3、2+2a+4=(a+2)2Ca3-4a2=a2(a-4)D1-4x2=(1+4x)(1-4x)6已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )A3.1; B4; C2; D6.17如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.58如图是二次函数y =ax2+bx + c(a0)图象如图所示,则下列结论,c0,2a + b=0;a+b+c=0,b24ac0的解集是_18如图,在RtABC中,
4、E是斜边AB的中点,若AB10,则CE_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12方向,B在地面C的北偏东57方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin330.54,cos330.84,tan330.65)20(6分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值21(6分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC17.2米,设太阳光
5、线与水平地面的夹角为,当60时,测得楼房在地面上的影长AE10米,现有一老人坐在MN这层台阶上晒太阳(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当45时,问老人能否还晒到太阳?请说明理由22(8分)如图,在平面直角坐标系中,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2bxc经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD轴于D,交AB于点E当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,
6、点M为OA的中点,那么是否存在这样的直线l,使得MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由23(8分)已知RtABC中,ACB90,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在ABC内部),连接AP、BP、BQ如图1求证:APBQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系24(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;OBOD,12,
7、OEOF,请你从中选取两个条件证明BEODFO;(2)在(1)条件中你所选条件的前提下,添加AECF,求证:四边形ABCD是平行四边形25(10分)如图,已知ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,EAB=DAC=90,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:BDA=ECA(2)若m=,n=3,ABC=75,求BD的长.(3)当ABC=_时,BD最大,最大值为_(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。26(12分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点已知和的顶点都在格点
8、上,线段的中点为 (1)以点为旋转中心,分别画出把顺时针旋转,后的,;(2)利用(1)变换后所形成的图案,解答下列问题:直接写出四边形,四边形的形状;直接写出的值; 设的三边,请证明勾股定理27(12分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不
9、少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式【详解】当BC与x轴平行时,过B作BEx轴,过D作DFx轴,交BC于点G,如图1所示等腰直角ABO的O点是坐标原点,A的坐标是(4,0),AO=4,BC=BE=AE=E
10、O=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,D坐标为(1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k0),将两点坐标代入得:,解得:则这条直线解析式为y=x+1故选D【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键2、D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论【详解】解:摘掉铁片2,4后
11、,铁片1,1,5,6在铁环上按逆时针排列,选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1故选D【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键3、B【解析】试题解析:AC=10,AO=BO=5,BAC=36,BOC=72,矩形的对角线把矩形分成了四个面积相等的三角形,阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=10 故选B4、A【解析】试题分析:在计算器上依次按键转化为算式为=-1.414;计算可得结果介于2与1之间故选A考点:1、计算器数的开方;2、实数与数轴5、C【解析】试题分析:A、B无法
12、进行因式分解;C正确;D、原式=(1+2x)(12x)故选C,考点:因式分解【详解】请在此输入详解!6、A【解析】数据组2、x、8、1、1、2的众数是2,x=2,这组数据按从小到大排列为:2、2、2、1、1、8,这组数据的中位数是:(2+1)2=3.1.故选A.7、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一
13、个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率8、B【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】抛物线与y轴交于负半轴,则c1,故正确;对称轴x1,则2a+b=1故正确;由图可知:当x=1时,y=a+b+c1故错误;由图可知:抛物线与x轴有两个不同的交点,则b24ac1故错误综上所述:正确的结论有2个故选B【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用9、D【
14、解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台新闻在线收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查10、A【
15、解析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.11、D【解析】解:当点Q在AC上时,A=30,AP=x,PQ=xtan30=33x,y=12APPQ=12x33x=36x2;当点Q在BC上时,如下图所示:AP=x,AB=1,A=30,BP=1x,B=60,PQ=BPtan60=3(1x),SAPQ =12APPQ=12x3(16-x) =-32x2+83x ,该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下故选D点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注
16、意点Q在BC上这种情况12、C【解析】根据被开方数越大算术平方根越大,可得答案【详解】解:,34,a=,3a4,故选:C【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出34是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】因为A点的坐标为(a,a),则C(a1,a1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:A点的坐标为(a,a),C(a1,a1),当C在双曲线y=时,则a1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,a的取值范围是a+1故答案为a+1【点睛】本题主要考查反比例函数与几何图形的综合问题,
17、解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.14、3【解析】试题分析:因为等腰ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3考点:3等腰三角形的性质;3垂直平分线的性质15、【解析】先求出球的总数,再根据概率公式求解即可【详解】不透明的袋子里装有2个白球,1个红球,球的总数=2+1=3,从袋子中随机摸出1个球,则摸出白球的概率=故答案为【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果
18、数的商是解答此题的关键16、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,根据等腰三角形的性质以及三角形外角的性质在BCD中可求得CDB=CBD=ACB=1【详解】AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=1,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用17、x【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-3,系数化为1,得:x,故答案为x【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等
19、式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变18、5【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.考点:直角三角形斜边上的中线三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键20、【解析】由题意可知:菱形ABCD的边长是
20、5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=(2m1),AOBO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值【详解】解:,的长分别是关于的方程的两根,设方程的两根为和,可令,四边形是菱形,在中:由勾股定理得:,则,由根与系数的关系得:,整理得:,解得:,又,解得,【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法21、(1)楼房的高度约为17.3米;(2)当45时,老人仍可以晒到太阳理由见解析.【解析】试题分析:(1)在RtABE中,根据的正切
21、值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在RtABE中,,BA=10tan60=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.BFA=45,,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.CH=CF=0.1米,大楼的影子落在台阶MC这个侧面上
22、.小猫仍可晒到太阳.考点:解直角三角形.22、(1)y=x22x1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(,2)或(,2)或(,2)或(,2)【解析】解:(1)直线y=x+1与x轴、y轴分别交于A、B两点,A(1,0),B(0,1)抛物线y=x2bxc经过A、B两点,解得抛物线解析式为y=x22x1令y=0,得x22x1=0,解得x1=1,x2=1,C(1,0)(2)如图1,设D(t,0)OA=OB,BAO=15E(t,t1),P(t,t22t1)PE=yPyE=t22t1t1=t21t=(t+
23、2)2+1当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在如图2,过N点作NHx轴于点H设OH=m(m0),OA=OB,BAO=15NH=AH=1m,yQ=1m又M为OA中点,MH=2m当MON为等腰三角形时:若MN=ON,则H为底边OM的中点,m=1,yQ=1m=2由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若MN=OM=2,则在RtMNH中,根据勾股定理得:MN2=NH2MH2,即22=(1m)2(2m)2,化简得m26m8=0,解得:m1=2,m2=1(不合题意,舍去)yQ=2,由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若ON=OM=2,则在RtN
24、OH中,根据勾股定理得:ON2=NH2OH2,即22=(1m)2m2,化简得m21m6=0,=80,此时不存在这样的直线l,使得MON为等腰三角形综上所述,存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(,2)或(,2)或(,2)或(,2)(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标(2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值(2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否
25、存在,并求出相应Q点的坐标 “MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解23、(1)证明见解析(2) (3)EP+EQ= EC【解析】(1)由题意可得:ACP=BCQ,即可证ACPBCQ,可得 AP=CQ;作 CHPQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求AH= ,即可求 AP 的长;作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 O,由题意可证CNP CMQ,可得 CN=CM,QM=PN,即可证 RtCEMRtCEN,EN=EM,CEM=CEN=45,则可求得 EP、EQ、EC 之间的数量关系【详解】解:
26、(1)如图 1 中,ACB=PCQ=90,ACP=BCQ 且 AC=BC,CP=CQACPBCQ(SAS)PA=BQ如图 2 中,作 CHPQ 于 HA、P、Q 共线,PC=2,PQ=2,PC=CQ,CHPQCH=PH= 在 RtACH 中,AH= PA=AHPH= -解:结论:EP+EQ= EC理由:如图 3 中,作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 OACPBCQ,CAO=OBE,AOC=BOE,OEB=ACO=90,M=CNE=MEN=90,MCN=PCQ=90,PCN=QCM,PC=CQ,CNP=M=90,CNPCMQ(AAS),CN=CM,QM=PN,CE=
27、CE,RtCEMRtCEN(HL),EN=EM,CEM=CEN=45EP+EQ=EN+PN+EMMQ=2EN,EC=EN,EP+EQ=EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形24、(1)见解析;(2)见解析.【解析】试题分析:(1)选取,利用ASA判定BEODFO;也可选取,利用AAS判定BEODFO;还可选取,利用SAS判定BEODFO;(2)根据BEODFO可得EOFO,BODO,再根据等式的性质可得AOCO,根据两条对角线互相平分的四边形是平行四边形可得结论试题解析:证明:(1)选取,在BEO和DFO中,BE
28、ODFO(ASA);(2)由(1)得:BEODFO,EOFO,BODO,AECF,AOCO,四边形ABCD是平行四边形点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形25、135 m+n 【解析】试题分析:(1)由已知条件证ABDAEC,即可得到BDA=CEA;(2)过点E作EGCB交CB的延长线于点G,由已知条件易得EBG=60,BE=2,这样在RtBEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合ABDAEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大
29、=BE+BC=,此时BD最大=EC最大=;(4)由ABDAEC可得AEC=ABD,结合ABE是等腰直角三角形可得EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.试题解析:(1)ABE和ACD都是等腰直角三角形,且EAB=DAC=90,AE=AB,AC=AD,EAB+BAC=BAC+DAC,即EAC=BAD,EACBAD,BDA=ECA;(2)如下图,过点E作EGCB交CB的延长线于点G,EGB=90,在等腰直角ABE,BAE=90,AB=m= ,ABE=45,BE=2,ABC=75,EBG=180-75-45=60,BG=1,EG=,GC=BG+BC=4
30、,CE=,EACBAD,BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,BD=EC,BD最大=EC最大=,此时ABC=180-ABE=180-45=135,即当ABC=135时,BD最大=;(4)ABDAEC,AEC=ABD,在等腰直角ABE中,AEC+CEB+ABE=90,ABD+ABE+CEB=90,BFE=180-90=90,EF2+BF2=BE2,又在等腰RtABE中,BE2=2AE2,2AE2=EF2+BF2.点睛:(1)解本题第2小题的关键是过点E作EGCB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在RtEGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.26、(1)见解析;(2)正方形; ;见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湘师大新版八年级历史下册阶段测试试卷含答案
- 共享中国知到智慧树章节测试课后答案2024年秋上海工程技术大学
- 二零二五年度出租车公司驾驶员劳动合同竞业禁止合同4篇
- 二零二五宠物领养合同范本:宠物福利与责任4篇
- 挂广告牌合同(2篇)
- 二零二五年度生态农业灌溉设备供应合同4篇
- 2025年度门面房买卖合同附带商业风险评估及应对策略协议4篇
- 二零二五年度农产品溯源系统建设合同标的追溯保障:1、客户食品安全4篇
- 二零二五年度泥水工装修工程劳务派遣与培训合同4篇
- 2025版农村土地经营权流转项目验收评估合同3篇
- 无人化农场项目可行性研究报告
- 《如何存款最合算》课件
- 社区团支部工作计划
- 拖欠工程款上访信范文
- 2024届上海市金山区高三下学期二模英语试题(原卷版)
- 学生春节安全教育
- 《wifi协议文库》课件
- 《好东西》:女作者电影的话语建构与乌托邦想象
- 教培行业研究系列(七):出国考培的再研究供需变化的新趋势
- GB/T 44895-2024市场和社会调查调查问卷编制指南
- 道医馆可行性报告
评论
0/150
提交评论