长江大学地震勘探复习_第1页
长江大学地震勘探复习_第2页
长江大学地震勘探复习_第3页
长江大学地震勘探复习_第4页
长江大学地震勘探复习_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、绪论² 地球物理勘探:是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器设备观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造,寻找矿产资源,解决工程地质,水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。物探方法:重力勘探,磁法勘探,电法勘探,地震勘探。1) 重力勘探利用岩石、矿物(地层)之间的密度差异Þ引起重力场变化Þ 产生重力异常Þ 用重力仪测量其异常值Þ 根据异常变化情况反演地下地质构造情况2) 磁法勘探利用岩石、矿物(地层)之间的磁性差异Þ引起磁场变化Þ 产生磁力异常

2、Þ 用磁力仪测量其异常值Þ 根据异常变化情况反演地下地质构造情况3) 电法勘探利用岩石、矿物(地层)之间的电性差异Þ引起电(磁)场变化Þ 产生电性异常Þ 用电法(磁)仪测量其异常值Þ 根据异常变化情况反演地下地质构造情况 4) 地震勘探(重d)利用岩石、矿物(地层)之间的弹性差异Þ引起弹性波场变化Þ 产生弹性异常(速度不同)Þ 用地震仪测量其异常值(时间变化)Þ 根据异常变化情况反演地下地质构造情况地震又叫地动,地震分为天然地震和人工地震,两种地震的主要区别就是震源不同。发生天然地震时,人们首先

3、感到地面上下振动,这是垂直地面的振动,叫纵波;过一会儿会感到地面左右摇晃,这是平行地面的振动,叫横波。² 地震波:由震源激发的机械振动在地下岩层中向四周传播的运动过程,这一过程就是机械波,习称地震波(Seismic Wave)。 反射波法地震勘探基本原理(回声测距原理):S=vt/2实际地震勘探的基本环节:野外资料采集Þ室内资料处理Þ室内资料解释² 目前找油的主要方法:地质法:可以起到一个指向的作用,避免了盲目性,成本低,精度低。钻探法钻探是直接找油的方法:精度高,但钻探成本高,效率低。物探方法:一种间接找油的方法。精度高于地质法,但低于钻探方法;成本高

4、于地质法,但低于钻探方法。综合方法:几何地震学² 几何地震学:研究波前的空间位置与传播时间的关系,通过引用波前、射线等几何图形来描述波的运动过程和规律。也叫地震波运动学。² 地震勘探的理论基础-地震勘探中将地下岩石看做为弹性介质。用地震勘探方法解决地质问题的客观前提-不同岩石具有不同的弹性性质。地震波:一种在地层中传播的,频率较低(与天然地震的频率相近)的波,是弹性波在岩层中传播的一种通俗说法。地震波由一个震源激发。地震子波:由点源刚进入弹性区传播的地震波,研究表明弹性波在近距离内仍会发生较大变化,传播一段距离(几百米后)变的相对稳定,形成地震子波,并被认为在以后的传播中,

5、地震子波的变化不大。振动曲线&振动图:介质中某一质点在振动过程中介质质点的位移与时间关系的曲线。固定一点(XX1),不同点有不同的振动曲线。² 波前:把某一时刻tk,所有刚刚振动的质点构成的一个空间曲面,叫tk时刻的波前,它是地震波传播的最前沿的空间位置。² 波尾:由刚停止振动的所有质点构成的空间曲面,叫tk时刻的波尾,在波尾以内的各质点都已停止了振动,恢复了平静,其质点位移也为零,即波已经传过去了。² 波面波从震源出发向四周传播,在某一时刻,把波到达时间各点所连成的面,称波阵面,简称波面。视速度:² 惠更斯原理:波在传播过程中,任一时刻的波前面

6、上的每一点都可以看作是一个新的点震源,由它产生二次扰动,形成子波前,这些子波前的包络面,就是新的波前面。可确定波传播的方向(射线方向)。² 惠更斯-菲涅尔原理:波传播时,任一点处质点的新扰动,相当于上一时刻波前面上全部新震源所产生的子波在该点处相互干涉叠加形成的合成波。² 费马原理:波在各种介质中的传播路线,满足所用时间为最短的条件。地震波总是沿射线传播,以保证波到达时所用旅行时间最少准则; 地震波沿垂直于等时面的路线传播所用旅行时间最少; 等时面与射线总是互相垂直;² 反射波的形成条件:上、下介质界面必须是一个波阻抗界面,即波阻抗差不为零² 反射波的特

7、点1) 反射波的强度取决于反射系数R的大小,R大反射波强;2) 反射波极性的变化取决于R的正负,a) R>0,反射波与入射波相位相同,正极性反射;b) R<0,反射波与入射波相位相反,相差180度,负极性反射。3) 反射系数R定义式:在垂直入射时,反射波和入射波振幅之比,用R 表示。即RA反/A入当波垂直入射到反射界面时,反射系数R为: Z1,Z2 分别为上下层介质的波阻抗,1,2分别为上下层介质的密度,V1,V2分别为上下层介质的速度反射系数一般形式:反射系数的取值范围(-1,+1)区间。² 斯奈尔定律反映入射角、反射角、透射角的关系说明在地震勘探中,当地震波在地下岩层

8、中传播时,遇到了弹性分界面(即上、下岩层的物性不同),就会发生波的反射、折射、透射现象,形成反射波、折射波、透射波,它们的传播规律满足斯奈尔定律.入射角,反射角,透射角, v2 > v1三者关系: 层状介质中的斯奈尔定律: 折射波的形成机制地质模型:两层介质,下伏层的速度大于上覆层的速度,即 V2>V1 。折射波的形成条件1) 下面介质的波速要大于所有上面介质的波速2) 入射角是以临界角I 入射直达波、反射波、透射波、折射波、滑行波示意图时距曲线的概念:波从震源出发,传播到测线上各观测点的传播时间t,同观测点相对于激发点(坐标原点)的距离x,之间的关系。 直达波时距曲线:t = x

9、/v 采用自激自收方式,反射波同相轴形态与地下界面形态相对应水平界面的共炮点反射波时距曲线方程: 反射波时距曲线特点:1) 双曲线(共炮点接收)2) 极小点在炮点正上方,最小时间t=t0。 t0:自激自收时间3) 双曲线以t=X/V为渐近线,直达波是反射波的渐近线,(直达波总是先到达接收点)4) 时距曲线对应地下一段反射界面 关于t0时间² 自激自收时间和零炮检距时间,是反射波时距曲线的顶点,用于确定层位的深度h=1/2vt0 ² 正常时差: 对界面上某点以炮检距x进行观测得到的反射波旅行时与以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是由炮检距不为零引起的

10、,这种由炮检距引起的时差定义为正常时差。 ² 动校正(NMO)在水平界面情况下,从观测到的波的旅行时中减去正常时差t,得到x/2处的t0时间。 t0 = t- t² 目的:使得共炮点道集的反射波同相轴能反映地下界面的实际产状。 结论:动校正与界面倾角关系不大倾斜界面的共炮点反射波时距曲线的特点: 1) 双曲线2) 极小点总是相对于激发点偏向界面上倾方向,极小点实际上是虚震源在测上的投影。3) 反射波时距曲线以过极小点的时间轴对称。 ² 倾角时差概念(dip moveout) 界面倾斜,倾角为,测线与界面倾向一致,这时虽然还有OS=OS=x ,但 ,它们之差称为倾角

11、时差,这是由于界面倾斜引起的。也可以说是由激发点两侧对称位置观测到的来自同一界面的反射波的时差。 炮检距(offset):炮点到地面各观测点的距离初至时间(first break):所有波中最先到达检波器地震波的第一波峰时间。同相轴(event):各接收点属于同一相位振动的连线。共炮点(common shotpoint):所有接收点具有共同的炮点纵测线(inline):激发点和观测点在同一直线上非纵测线(offline):激发点不在测线上地质模型:岩层为平层平均速度:层状介质中地层的总厚度除以波在垂直层面的方向旅行的总时间。连续介质的直达波-回折波地震波从震源出发,向地下传播到某一深度,还来不

12、及到达分界面,就沿着一条圆弧返回到地面,把这种波叫做回折波。 最大穿透深度 覆盖层为连续介质时的反射波反射波形成条件:时距曲线 折射波折射波形成的基本条件 V2>V1,(Vn>Vi,(i=1,2n-1))入射角=临界角 折射波的特点1) 临界角外滑行波先于入射波到达界面上任何一点; 2) 折射波射线相互平行,与法线成临界角,同相轴为直线;3) 折射波存在一定“盲区”;4) 从空间看,盲区为圆锥,在震源所在的水平面上可看为圆,半径为:2htgc。 一个分界面情况下折射波的时距曲线 折射波时距曲线的特点 ² 多次波² 产生条件:强反射界面,如低速带底界面、不整合面、

13、火成岩界面、海水面、海底面。² 多次波类型1)全程多次波:在某一深度界面发生反射的波经过地面反射后,向下在同一界面上又发生反射,并来回多次。2)部分多次波:1) 短程多次波:地震波从某一深度界 面反射回来后,再在地面向下反射,然后又在某一个较浅的界面发生反射。2) 微屈多次波:在几个界面上发生多次反射,多次 反射的路径不是对称的;或在一个薄层内发生多次反射。3)虚反射:炸药爆炸时,激发能量的一部分向上传播,遇到地面再向下反射。 多次波的产生与地下岩性无关(是干扰波)。全程多次反射波时距曲线公式 全程多次反射波时距曲线特点 1、仍为双曲线,其极小点坐标xm ,tm ,且极小点仍位于界面

14、上倾方向,但偏移距比一次波偏移距大² 共炮点与共反射点时距曲线的异同 1) 两者时距曲线形式完全一样,都是双曲线,但物理含义不同.a) 水平界面共反射点时距曲线方程 2)共反射点(段)t0含义不同 动校正含义不同 CSP 一段界面 炮点处H回声时间 各道反射时间与炮点处t0时间之差 CRP 一个反射点 M点处回声时间 各道反射时间与M点t0时间之差 频谱分析1、与地震勘探有关的一些波的频谱特点² 面波频率低(10-30hz)² 反射波主频(30-50hz),深层反射频率更低² 声波频率较高,大于100hz² 工业交流电,50hz左右窄带补:i.

15、 激发条件对地震波频谱的影响ii. 药量大、频谱向低频方向移动iii. 岩石致密,频谱向高频方向移动iv. 不同类型反射波频率有差异。同一界面的反射波纵波比反射横波频率高,主要原因是横波的高频成分被吸收严重。v. 相同类型反射波随传播距离增加频率降低² 有效波:可用来解决所提出的地质任务的波,如反射波法中的反射波,折射波法中的折射波。² 干扰波:所有妨碍追踪、认辩有效波的其它波,如面波、声波、环境噪声、工业干扰等。² 干扰波的类型:1 规则干扰波:具有一定频谱和视速度,能在地震记录上以一定同相轴出现的干扰波。如声波、面波、浅层折射波、工业干扰、多次波、侧面波。2

16、随机干扰:没有一定规律,也没有一定的传播方向,在地震记录上形成杂乱无章的干扰背景。形成因素很多:自然条件、激发条件、人为条件。² 面波² 产生条件:震源较浅(井中爆炸深度浅)、坑炮、表层具有明显的成层性。² 特点:近地表传播,视速度等于真速度,频率低(20Hz左右或更低),速度低(2001000m/s),能量强,延续时间长(衰减慢),时距曲线为直线,速度与频率有关,具有频散性,常呈扫帚状散开。² 有效波和干扰波的主要区别:1) 频谱有差异2) 传播方向(视速度)的差异3) 动校正后剩余时差的差异4) 出现规律的差异² 地震测线:沿地面进行地震勘

17、探野外工作的路线。² 观测系统:地震波的激发点和接收点的相互位置关系,或激发点与接收排列的相对空间位置关系。 ² 地震排列:在具体施工中,每条测线都分成若干观测段,逐段进行观测,每次激发时所安置的多道检波器的观测地段称为地震排列.² 炮间距:指相邻激发点之间的距离,d。 ² 道间距:指相邻接收点之间的距离,x。调查目的不同,道间距不同,道间距小,测量精度高。² 偏移距:指激发点离最近一个接收点的距离,等于最小炮检距,x0。一般为道间距的整数倍, x0=x 。 ² 炮检距:第i道到激发点之间的距离,xi。 xi =x0+(i-1)x &

18、#178; 最大炮检距:炮点与最远一个检波器的距离,xmax与探测深度相关,一般为目的深度的0.7-1.5倍。² 排列长度:L=(N-1) x。显然道间距大,排列长度大,工作效率高,但排列长度不宜过大,过大相位追踪对比困难,远处能量衰减大。² 反射点间距:D= x/2 ² 覆盖:如果某一段界面上的反射波能被排列接收,称这段界面受到覆盖或受到追踪。综合图示法² 多次覆盖:指对被追踪界面的观测次数而言,n次覆盖即对界面追踪n次。² 多次覆盖的目的:突出发射波,压制干扰波(主要压制多次波),提高信噪比。例题:排列长度:N=24道间距:x炮间距:3x每

19、放一炮,排列和炮点向前移动的道数:d=3单边放炮覆盖次数:n=?d:每放一炮,排列和炮点向前移动的道数N:总接收道数n:覆盖次数S=1 端点放炮S=2 中间放炮三维地震勘探中的三个面积(1)药量选择:l 影响地震波的振幅和主频l 对于小药量,能量随药量正比增加;对于大药量,药量增大到一定值后,振幅不随药量的增加而增大。能量主要用于破碎带。l 主频与药量成反比,小药量产生地震波的频率高于大药量产生的频率,大药量不利于产生高频,所以药量要适中。l 炸药包的形状,球状最佳,长柱状次之。 (2)井深:l 潜水面以下,最好在潜水面以下3-5米。 潜水面的强反射作用可以增强反射波能量,减少干扰波能量。l

20、爆炸深度太浅,实际是在低速带中激发,容易产生强面波干扰,难以得到好的资料。l 激发深度太深,不仅增大了成本,而且可能会因为虚反射干扰及岩性变化导致记录质量变坏。(3)岩性:l 松软岩石中激发-地震波的频率低 坚硬岩石中激发-地震波的主频高,但是吸收严重 潮湿可塑性岩层-地震波能量强,如胶岩、含水粘土、泥岩、充水砂岩等(4)激发方式:1) 在水中、井中、坑中,在注满水的井中效果最佳。2) 单井、多井组合激发。(5)检波器的埋置要求:1) 平、稳、正、直、紧2) 高差小、牢固、位置准确、垂直地面,耦合好3) 不管是山地施工、平原施工、沙漠施工,检波器埋置与地面耦合的好坏直接关系到记录质量问题。因此

21、,野外应尽最大努力做好这项工作,保证检波有一个良好的接收环境,资料才能有所保障。山地检波耦合不好特别突出。(6)低速带&降速带低速带:在地表附近的一定深度范围内,地震波的传播速度往往要比它下面的地层地震波速低得多,这个深度范围内的地层称为低速带。降速带:在某些地区低速带与高速带之间,还有一层速度偏低的过渡区,叫降速带。(7)静校正概念实际工作中,由于地形起伏 、地下介质不均匀、地表低速带以及炮点深度的影响,会使反射波时距曲线产生畸变,这时即使动校正准确,时距曲线也仍存在畸变。也就是说,仅作动校正是不够的,还必须消除上述原因造成的反射时差t,这种校正称为静校正。包括:地形校正、炮点深度校

22、正、低速带校正。地震勘探组合法² 组合:把多个检波器的信号迭加在一起作为一道输出² 组合目的:压制干扰波(主要压制面波、声波等低速度规则干扰波及无规则的随机干扰),提高信噪比² 组合原理:干扰波和有效波在传播方向上的差别及统计效应组合的方向特性曲线对于给定的速度V,检波器个数n,组内距x,可作出(n,t/T)的图形,称为组合的方向特性曲线。lllll² 组合参数对方向特性的影响 1) 组合点数n的影响通放带边界为1/2n,n越大通放带越窄,压制带越宽。这就是说,检波器个数越多,对干扰波压制范围越宽,并且n越大,压制带极值越低,即压制带内 的平均值越小,压

23、制效果越好。2) 组内距x的影响 保持n不变,x增大使给定V*值的波向压制带内移动(y变大了),这等于通放带变窄,压制带变宽。² 随机干扰的特点:在地震记录上表现为杂乱无章的震动,频谱很宽,近似于白噪声,没有一定的视速度,表面上看是不规则的,但遵循统计规律。² 描述随机过程的参数 平均值:地震勘探中随机干扰的平均值为0; 方差:描述随机过程偏离平均值幅度的量。 自相关函数:描述随机过程变换快慢的量。对于平均值为0的随机过程, 只需用自相关函数,这个统计参数就可充分描述其统计特征² 相关半径;由于组合法是同一时间不同位置上振动的叠加,所以只研究此位置上的相关性够了。

24、任意两个检波点之间波形的相似程度是用相关系数表示的,若在某距离上不规则波(随机干扰)互不相似,称此距离为相关半径。² 组合的统计特性:当组内距大于随机干扰的相关半径时,经过组合后,有效波增强倍,干扰波增强倍,即信噪比增强倍。² 正常时差概念对界面上某点以炮检距x进行观测得到的反射波旅行时与以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是由炮检距不为零引起的,这种由炮检距引起的时差定义为正常时差。 动校正(NMO)在水平界面情况下,从观测到的波的旅行时中减去正常时差t,得到x/2处的t0时间,t0 = t- t。 把某个波按水平界面一次反射波作动校正后的反射时间

25、与共中心点处的tom之差称为剩余时差。多次波的剩余时差特点:(1)剩余时差是二次曲线(抛物线); (2)剩余时差与X2成正比,即各叠加道剩余时差是不同的,叠加时为不同相叠加,总有一部分能量抵消,所以,叠加后能量总振幅小于单个能量振幅,从而压制了多次波。5、动校正时将产生两种情况:(1)正常时差正好被校正掉,双曲线变成直线(t=t0直线),不存在相位差(剩余时差),叠加为同相叠加,结果振幅增强(一次反射波)。(2)正常时差校正不完全,双曲线变成曲线(不是直线),各道间仍有相位差(存在剩余时差),叠加为不同相叠加,结果振幅变小(多次波,随机干扰)。6、影响多次覆盖效果的因素(1)动校正速度选取不准确 注意:t轴向下(2)地层倾角的影响 1)共反射点分散2)用平界面的动校正量进行动校正,造成校正不准补:i. 共中心点道集经过动校正处理,动校正量的大小与动校正所用速度有关:ii. 速度较小时,校正过量,同相轴向下弯曲;iii. 速度较大时校正不足,同相轴向上弯曲;iv. 当动校正速度正好将反射波同相轴正好校正成一条水平直线时,动校正所对应的速度即为叠加速度。第六章 地震波速度1、地震波速度的影响因素l 岩性是影响地震波速度最明显的因素。一种岩石的速度具有一定的分,范围;纵横波速度比能反映岩性。l 密度:几乎各种岩石的波速都随密度增大而增大。l 构

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论