数字电子技术机械工业出版社张建华主编_第1页
数字电子技术机械工业出版社张建华主编_第2页
数字电子技术机械工业出版社张建华主编_第3页
数字电子技术机械工业出版社张建华主编_第4页
数字电子技术机械工业出版社张建华主编_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电子技术课程组电子技术课程组一、一、 本课程的性质和任务本课程的性质和任务 数字电子技术是电器类、自控类和电子类专数字电子技术是电器类、自控类和电子类专业在电子技术方面入门性质的技术基础课。业在电子技术方面入门性质的技术基础课。 本课程的任务是使学生获得数字电子技术方面的本课程的任务是使学生获得数字电子技术方面的基本理论、基础知识和基本技能,培养学生分析问题基本理论、基础知识和基本技能,培养学生分析问题和解决问题的能力,为深入学习计算机、数控类有关和解决问题的能力,为深入学习计算机、数控类有关课程以及为今后从事专业工作打下良好的基础。课程以及为今后从事专业工作打下良好的基础。性质:性质:任务任

2、务:输出信号与输入信号之间的对应逻辑关系输出信号与输入信号之间的对应逻辑关系逻辑代数逻辑代数只有高电平和低电平两个取值只有高电平和低电平两个取值导通导通( (开开) )、截止、截止( (关关) )便于高度集成化、工作可靠性高、便于高度集成化、工作可靠性高、抗干扰能力强和保密性好等抗干扰能力强和保密性好等研究对象研究对象分析工具分析工具信信 号号电子器件电子器件工作状态工作状态主要优点主要优点二、数字电路特点二、数字电路特点 将晶体管、电阻、电将晶体管、电阻、电容等元器件用导线在线路容等元器件用导线在线路板上连接起来的电路。板上连接起来的电路。将上述元器件和导线通过半将上述元器件和导线通过半导体

3、制造工艺做在一块硅片上而导体制造工艺做在一块硅片上而成为一个不可分割的整体电路。成为一个不可分割的整体电路。根据电路结构不同分根据电路结构不同分分立元件电路分立元件电路集集 成成 电电 路路根据半导体的导电类型不同分根据半导体的导电类型不同分 双极型数字集成电路双极型数字集成电路单极型数字集成电路单极型数字集成电路以双极型晶体管以双极型晶体管作为基本器件作为基本器件以单极型晶体管以单极型晶体管作为基本器件作为基本器件例如例如 CMOS例如例如 TTL、ECL三、数字电路的分类三、数字电路的分类集成电路集成电路分分 类类集集 成成 度度电路规模与范围电路规模与范围小规模集成小规模集成电路电路 S

4、SI1 10 门门/片片或或10 100 个个元件元件/片片逻辑单元电路逻辑单元电路包括:逻辑门电路、集成触发器包括:逻辑门电路、集成触发器中规模集成中规模集成电路电路 MSI10 100 门门/片或片或 100 1000 个元件个元件/片片逻辑部件逻辑部件 包括:计数器、包括:计数器、 译码器、译码器、编码器、数据选择器、寄存器、算术编码器、数据选择器、寄存器、算术运算器、比较器、转换电路等运算器、比较器、转换电路等 大规模集成大规模集成电路电路 LSI100 1000 门门/片或片或 1000 100000 个元个元件件/片片数字逻辑系统数字逻辑系统包括:中央控制器、存储器、各种接包括:中

5、央控制器、存储器、各种接口电路等口电路等超大规模集超大规模集 成电路成电路 VLSI大于大于 1000 门门/片或大于片或大于 10 万万个元件个元件/片片高集成度的数字逻辑系统高集成度的数字逻辑系统例如:各种型号的单片机,即在一片例如:各种型号的单片机,即在一片 硅片上集成一个完整的微型计算机硅片上集成一个完整的微型计算机根据集成密度不同分根据集成密度不同分四、四、 数字电子技术的研究内容数字电子技术的研究内容逻辑代数基础逻辑代数基础门电路门电路组合逻辑电路组合逻辑电路触发器触发器时序逻辑电路时序逻辑电路半导体存储器和可编程器件半导体存储器和可编程器件脉冲波形的产生和整形脉冲波形的产生和整形

6、A/D和和D/A转换转换五、如何学好这门课五、如何学好这门课 2、 学习方法学习方法* 重视实验课重视实验课1、树立学习信心、树立学习信心* 上课认真听讲上课认真听讲* 自己做作业自己做作业主要要求:主要要求: 了解数字电路的特点和分类。了解数字电路的特点和分类。了解脉冲波形的主要参数。了解脉冲波形的主要参数。1.1概述概述一、模拟信号和数字信号一、模拟信号和数字信号 模拟信号:在时间和数值上连续变化的信号。模拟信号:在时间和数值上连续变化的信号。 时间上连续,幅值上也连续时间上连续,幅值上也连续数字信号:在时间和数值上变化是离散的信号。数字信号:在时间和数值上变化是离散的信号。 时间上离散,

7、幅值上整数化时间上离散,幅值上整数化 tt二、模拟电路和数字电路二、模拟电路和数字电路 模拟电路:工作在模拟信号下的电子电路。模拟电路:工作在模拟信号下的电子电路。 数字电路:工作在数字信号下的电子电路。具体讲,数字电路:工作在数字信号下的电子电路。具体讲,数字数字电路就是对数字信号进行产生、存储、传输、变换、运算电路就是对数字信号进行产生、存储、传输、变换、运算及处理的电子电路。及处理的电子电路。三、数字电路的优点三、数字电路的优点 精确度较高;精确度较高; 有较强的稳定性、可靠性和抗干扰能力;有较强的稳定性、可靠性和抗干扰能力; 具有算术运算能力和逻辑运算能力,可进行逻辑推理和逻具有算术运

8、算能力和逻辑运算能力,可进行逻辑推理和逻辑判断;辑判断; 电路结构简单,便于制造和集成;电路结构简单,便于制造和集成; 使用方便灵活。使用方便灵活。理解理解 BCD 码的含义,掌握码的含义,掌握 8421BCD 码码,了解其他常用了解其他常用 BCD 码。码。主要要求:主要要求: 掌握十进制数和二进制数的表示及其相互转换。掌握十进制数和二进制数的表示及其相互转换。了解八进制和十六进制。了解八进制和十六进制。1.2数制和码制制和码制1、数制的几个概念、数制的几个概念:在某一进位制的数中,每一位的大小:在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数就都对应着该位

9、上的数码乘上一个固定的数,这个固定的数就是这一位的权数。权数是一个幂。是这一位的权数。权数是一个幂。 :表示数时,仅用一位数码往往不够用,必须:表示数时,仅用一位数码往往不够用,必须用进位计数的方法组成多位数码,且多位数码每一位的构成用进位计数的方法组成多位数码,且多位数码每一位的构成及低位到高位的进位都要遵循一定的规则,这种计数制度就及低位到高位的进位都要遵循一定的规则,这种计数制度就称为进位计数制,简称数制。称为进位计数制,简称数制。 :进位制的基数,就是在该进位制中可能用到的数码:进位制的基数,就是在该进位制中可能用到的数码个数。个数。一一 数制数制类别类别十进制十进制(Decimal)

10、二进制二进制(Binary)八进制八进制(Octal)十六进制十六进制(Hexadecimal)数码数码0,1,90,10,1,70,1,9,AF基数基数102816进位规则进位规则逢逢10进进1逢逢2进进1逢逢8进进1逢逢16进进1第第i i位的权值位的权值10i i2i i8i i16i i2、几种常用数制、几种常用数制结论:结论: 一般地,一般地,R进制需要用到进制需要用到R个数码,基数是个数码,基数是R ;运算规律为逢;运算规律为逢R进一。进一。 如果一个如果一个R进制数进制数M包含位整数和位小数,即包含位整数和位小数,即 (M)R (an-1 an-2 a1 a0 a1 a2 am)

11、R 位置记数法位置记数法 an-1 R n-1 an-2 R n-2 a1 R 1 a0 R 0a1 R -1 a2 R -2 am R m 按权展开法按权展开法 R1nmiiRai 几几种种进进制制数数之之间间的的对对应应关关系系十进制数二进制数八进制数十六进制数0123456789101112131415000000000100010000110010000101001100011101000010010101001011011000110101110011110123456710111213141516170123456789ABCDEF1032101232375112121202121

12、20210111011).().( 1010128525450687643848687834376).(.).( 102101216066493916116116111610163113).()( AB 2101101061051021015612 .例:例: 数制转换:任意进制按权展开即可得到十进制数。数制转换:任意进制按权展开即可得到十进制数。1.任意进制数转换为十进制数任意进制数转换为十进制数 按权展开,相加即可得按权展开,相加即可得。2.十进制数转换为任意进制数十进制数转换为任意进制数 整数部分:整数部分:除基数除基数R倒取余法倒取余法 小数部分:小数部分:乘基数乘基数R取整法取整法例

13、例2. 将十进制数将十进制数 (25.638)10 转换为二进制数。转换为二进制数。 3、数制间的转换、数制间的转换(25)10=(11001)2(0.638)10=(0.1010)2(25.638)10=(11001.1010)23.二进制数和八进制数、十六进制数间的转换二进制数和八进制数、十六进制数间的转换 八进制数和十六进制数的基数分别为八进制数和十六进制数的基数分别为 8=23,16=24, 所以三位二进制数恰好相当一位八进制数,四位二进制数所以三位二进制数恰好相当一位八进制数,四位二进制数相当一位十六进制数,相当一位十六进制数, 它们之间的相互转换是很方便的。它们之间的相互转换是很方

14、便的。1)2进制数转换为进制数转换为8进制、进制、16进制数进制数.小数点小数点2)8进制、进制、16进制数转换为进制数转换为2进制数进制数8进制数进制数 2进制数:进制数:1位变位变3位位16进制数进制数 2进制数:进制数:1位变位变4位位例例: : 求求(1101111010.1011)2 = (?)8 = (?)16二进制二进制 1 101 111 010 . 101 1 八进制八进制 1 5 7 2 . 5 4 所以所以 (01101111010.1011)2 = (1572.54) 8 二进制二进制 0011 0111 1010 . 1011 十六进制十六进制 3 7 A . B 所

15、以所以 (01101111010.1011)2 = (37AB) 16 0000例例: : 求求(375.46)8 = (?)2 (678.A5)16 = (?)2八进制八进制 3 7 5 . 4 6二进制二进制 011 111 101.100 110十六进制十六进制 6 7 8 . A 5 二进制二进制 0110 0111 1000 . 1010 0101所以所以 (375.46)8 = (011111101.100110)2所以所以 (678.A5)16 = (11001111000 . 10100101)2二二 代码代码 用一定位数的二进制数来表示十进制数码、字母、符号用一定位数的二进制

16、数来表示十进制数码、字母、符号等信息称为等信息称为编码编码。 这一定位数的二进制数就称为这一定位数的二进制数就称为代码代码。 数字系统只能识别数字系统只能识别0 0和和1 1,怎样才能表示更多的数码、符,怎样才能表示更多的数码、符号和字母呢?用编码可以解决此问题。号和字母呢?用编码可以解决此问题。 用用4 4位二进制数位二进制数b b3 3b b2 2b b1 1b b0 0来表示十进制数中的来表示十进制数中的 0 0 9 9 十十个数码。简称个数码。简称BCDBCD码。有多种编码方式。码。有多种编码方式。1、二十进制码(、二十进制码(BCD码)码)对于对于N个信息,要用几位的二进制数才能满足

17、编码呢?个信息,要用几位的二进制数才能满足编码呢? 2n N8421码码 余余3码码 2421码码 5421码码 余余3循环码循环码编码0123456789十进种类制数几种常见的几种常见的BCD码码8421BCD码和十进制间的转换是码和十进制间的转换是直接按位(按组)转换直接按位(按组)转换。如:如: (36)10=(0011 0110)8421BCD=(110110)8421BCD (101 0001 0111 1001)8421BCD=(5179)102、可靠性编码、可靠性编码1.格雷码(格雷码(Gray码)码) 格雷码是一种典型的循环码。格雷码是一种典型的循环码。循环码特点:循环码特点:

18、 相邻性相邻性:任意两个相邻码组间仅有一位的状态不同。:任意两个相邻码组间仅有一位的状态不同。 循环性循环性:首尾两个码组也具有相邻性。:首尾两个码组也具有相邻性。 十进制数十进制数格雷码格雷码十进制数十进制数格雷码格雷码00000811001000191101200111011113001011111040110121010501111310116010114100170100151000两位格雷码两位格雷码00110000111100 000000111111 11三位格雷码三位格雷码四位格雷码四位格雷码0 00 11 11 01 01 10 10 00110 1 0 0 1 0 1 1

19、1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 00 0 00 0 10 1 10 1 01 1 01 1 11 0 11 0 0一一 种种 典典 型型 的的 格格 雷雷 码码2. 奇偶校验码奇偶校验码 十进制数十进制数8421BCD奇校验码奇校验码8421BCD偶校验码偶校验码 信息位信息位 校验位校验位 信息位信息位 校验位校验位00 0 0 0 10 0 0 0 010 0 0 1 00 0 0 1 120 0 1 0 00 0 1 0 130 0 1 1 10 0 1 1 040 1 0 0 00 1 0 0 150 1 0 1 10 1 0 1 060 1 1 0 1

20、 0 1 1 0 0 70 1 1 1 00 1 1 1 181 0 0 0 01 0 0 0 191 0 0 1 11 0 0 1 08421BCD奇偶校验码奇偶校验码3. ASCII码(码(American Standard Cord for Information Interchange) ASCII码,即美国信息交换标准代码。采用码,即美国信息交换标准代码。采用7位二进制编码,用来表示位二进制编码,用来表示27(即(即128)个字符。)个字符。主要要求:主要要求: 掌握掌握逻辑代数的常用运算逻辑代数的常用运算。理解并初步掌握理解并初步掌握逻辑函数的建立和表示的方法。逻辑函数的建立和表示

21、的方法。 1.3 逻辑函数及其表示方法逻辑函数及其表示方法 掌握真值表、逻辑式和逻辑图的特点及其掌握真值表、逻辑式和逻辑图的特点及其相相互转换的方法互转换的方法。 一、基本逻辑函数及运算一、基本逻辑函数及运算 基本逻辑函数基本逻辑函数 与逻辑与逻辑 或逻辑或逻辑 非逻辑非逻辑与运算与运算( (逻辑乘逻辑乘) ) 或或运算运算( (逻辑加逻辑加) ) 非运算非运算( (逻辑非逻辑非) ) 1. 与逻辑与逻辑 决定某一事件的所有条件都具备时,该事件才发生决定某一事件的所有条件都具备时,该事件才发生灭灭断断断断亮亮合合合合灭灭断断合合灭灭合合断断灯灯 Y开关开关 B开关开关 A开关开关 A、B 都闭

22、合时,都闭合时,灯灯 Y 才亮。才亮。 规定规定:开关闭合为逻辑开关闭合为逻辑 1断开为逻辑断开为逻辑 0 灯亮为逻辑灯亮为逻辑 1灯灭为逻辑灯灭为逻辑 0 真值表真值表11 1YA B00 000 101 0逻辑表达式逻辑表达式 Y = A B 或或 Y = AB 与门与门 ( (AND gate) )若有若有 0 出出 0;若全;若全 1 出出 1 开关开关 A 或或 B 闭合或两者都闭合时,灯闭合或两者都闭合时,灯 Y 才亮。才亮。2. 或逻辑或逻辑 决定某一事件的诸条件中,只要有一个决定某一事件的诸条件中,只要有一个或一个以上具备时,该事件就发生。或一个以上具备时,该事件就发生。灭灭断

23、断断断亮亮合合合合亮亮断断合合亮亮合合断断灯灯 Y开关开关 B开关开关 A若有若有 1 出出 1若全若全 0 出出 0 00 011 1YA B10 111 0逻辑表达式逻辑表达式 Y = A + B 或门或门 ( (OR gate) ) 1 3. 非逻辑非逻辑决定某一事件的条件满足时,决定某一事件的条件满足时,事件不发生;反之事件发生事件不发生;反之事件发生。 开关闭合时灯灭,开关闭合时灯灭, 开关断开时灯亮。开关断开时灯亮。 AY0110Y = A 1 非非门门( (NOT gate) ) 又称又称“反相器反相器” 二、常用复合逻辑运算二、常用复合逻辑运算 由基本逻辑运算组合而成由基本逻辑

24、运算组合而成 与非与非逻辑逻辑( (NAND) )先与后非先与后非若有若有 0 出出 1若全若全 1 出出 010 001 1YA B10 111 001 1或非逻辑或非逻辑 ( NOR )先或后非先或后非若有若有 1 出出 0若全若全 0 出出 110 0YA B00 101 0与或非逻辑与或非逻辑 ( (AND OR INVERT) )先与后或再非先与后或再非异或逻辑异或逻辑 ( (Exclusive OR) )若相异出若相异出 1若相同出若相同出 0同或逻辑同或逻辑 ( (Exclusive - NOR,即异或非,即异或非) )若相同出若相同出 1若相异出若相异出 000 001 1YA

25、 B10 111 010 011 1YA B00 101 0注意注意:异或和同或互为反函数,即:异或和同或互为反函数,即 例例 试对应输入信号波形分别画出下图各电路的输出波形。试对应输入信号波形分别画出下图各电路的输出波形。解:解:Y1有有0出出0 全全1出出1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1Y2Y3 相同出相同出 0 相异出相异出 1三、逻辑符号对照三、逻辑符号对照 国家标准国家标准曾用标准曾用标准美国标准美国标准四、逻辑函数及其表示方法四、逻辑函数及其表示方法 逻辑函数描述了某种逻辑关系。逻辑函数描述了某种逻辑关系。常采用真值表、逻辑函数式、卡诺图和逻辑图等

26、表示。常采用真值表、逻辑函数式、卡诺图和逻辑图等表示。1. 真值表真值表 列出输入变量的各种取值组合及其对列出输入变量的各种取值组合及其对应输出逻辑函数值的表格称真值表。应输出逻辑函数值的表格称真值表。列列真真值值表表方方法法 ( (1) )按按 n 位二进制数递增的方式列位二进制数递增的方式列 出输入变量的各种取值组合。出输入变量的各种取值组合。( (2) ) 分别求出各种组合对应的输出分别求出各种组合对应的输出 逻辑值填入表格逻辑值填入表格。000001110111011111110111101100111101010110010001111001101010001011000100100

27、00000YDCBA输出变量输出变量 输输 入入 变变 量量 4 个输入个输入变量有变量有 24 = 16 种取种取值组合。值组合。的的真真值值表表。例例如如求求函函数数 CDABY 2. 逻辑函数式逻辑函数式 表示输出函数和输入变量逻辑关系的表示输出函数和输入变量逻辑关系的 表达式。又称逻辑表达式,简称逻辑式。表达式。又称逻辑表达式,简称逻辑式。 逻辑函数式一般根据真值表、卡诺图或逻辑图写出。逻辑函数式一般根据真值表、卡诺图或逻辑图写出。 ( (1) )找出函数值为找出函数值为 1 的项。的项。( (2) )将这些项中输入变量取值为将这些项中输入变量取值为 1 的用原变量代替,的用原变量代替

28、, 取值为取值为 0 的用反变量代替,则得到一系列与项。的用反变量代替,则得到一系列与项。( (3) )将这些与项相加即得逻辑式。将这些与项相加即得逻辑式。真值表真值表逻辑式逻辑式例如例如 ABC1000111100110101000100100100YCBA011010001111 逻辑式为逻辑式为 3. 逻辑图逻辑图 运算次序为先非后与再或,因此用三级电路实现之。运算次序为先非后与再或,因此用三级电路实现之。由逻辑符号及相应连线构成的电路图。由逻辑符号及相应连线构成的电路图。 根据逻辑式画逻辑图的方法根据逻辑式画逻辑图的方法: :将各级逻辑运算用将各级逻辑运算用 相应逻辑门去实现。相应逻辑

29、门去实现。 例如例如 画画 的逻辑图的逻辑图 反变量用非门实现反变量用非门实现 与项用与门实现与项用与门实现 相加项用或门实现相加项用或门实现 1.4逻辑代数的基本定律和规则逻辑代数的基本定律和规则 主要要求:主要要求: 掌握逻辑代数的掌握逻辑代数的基本公式和基本定律基本公式和基本定律。 了解逻辑代数的重要规则了解逻辑代数的重要规则。一、基本公式一、基本公式 逻辑常量运算公式逻辑常量运算公式 逻辑变量与常量的运算公式逻辑变量与常量的运算公式 0 0 = 00 1 = 01 0 = 01 1 = 10 + 0 = 00 + 1 = 11 + 0 = 11 + 1 = 10 1 律律重迭律重迭律

30、互补律互补律 还原律还原律 0 + A = A1 + A = 1 1 A = A0 A = 0A + A = A A A = A 二、常用公式二、常用公式 ( (一一) ) 与普通代数相似的公式与普通代数相似的公式 交换律交换律 A + B = B + A A B = B A结合律结合律 (A + B) + C = A + (B + C) (A B) C = A (B C)分配律分配律 A (B + C) = AB + AC A + BC = (A + B) (A + C) 普通代数没有!普通代数没有! 利用真值表利用真值表 逻辑等式的逻辑等式的证明方法证明方法 利用基本公式和基本定律利用基本

31、公式和基本定律111111111100 例例 证明等式证明等式 A + BC = (A + B) (A + C)解:解:真值表法真值表法0000A B CA + BC(A + B) (A + C)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 ( (二二) ) 逻辑代数的特殊公式逻辑代数的特殊公式吸收律吸收律 A + AB = A A + AB = A (1 + B) = A 真 或 还是真(1 + ? (任何值)=1)001 1111 0110 1110 0A+BA BA B001 1001 0000 1110 0A BA+BA B ( (二二) ) 逻辑代

32、数的特殊公式逻辑代数的特殊公式吸收律吸收律 A + AB = A 推广公式:推广公式: 思考:思考:( (1) ) 若已知若已知 A + B = A + C,则,则 B = C 吗?吗? ( (2) ) 若已知若已知 AB = AC,则,则 B = C 吗?吗? 推广公式:推广公式:摩根定律摩根定律 ( (又称反演律又称反演律) ) 三、重要规则三、重要规则 ( (一一) ) 代入规则代入规则 A A A A均用均用 代替代替A均用均用 代替代替B均用均用C代替代替利用代入规则能扩展基本公式的应用。利用代入规则能扩展基本公式的应用。 将逻辑等式两边的某一变量均用同将逻辑等式两边的某一变量均用同

33、一个逻辑函数替代,等式仍然成立。一个逻辑函数替代,等式仍然成立。变换时注意:变换时注意:( (1) ) 不能改变原来的运算顺序。不能改变原来的运算顺序。( (2) ) 反变量换成原变量只对单个变量有效,而长非反变量换成原变量只对单个变量有效,而长非 号保持不变。号保持不变。 可见,求逻辑函数的反函数有两种方法:可见,求逻辑函数的反函数有两种方法:利用反演规则或摩根定律。利用反演规则或摩根定律。 原运算次序为原运算次序为 ( (二二) ) 反演规则反演规则 对任一个逻辑函数式对任一个逻辑函数式 Y,将,将“”换成换成“+”+”,“+”换成换成“”,“0”换成换成“1”,“1”换成换成“0”,原变

34、量换成反变量,反变量,原变量换成反变量,反变量换成原变量,则得到原逻辑函数的反函数换成原变量,则得到原逻辑函数的反函数。Y ( (三三) ) 对偶规则对偶规则 对任一个逻辑函数式对任一个逻辑函数式 Y,将,将“”换成换成“+”+”,“+”+”换成换成“”,“0”换成换成“1”,“1”换成换成“0”,则得到原逻,则得到原逻辑函数式的对偶式辑函数式的对偶式 Y 。 对偶规则:两个函数式相等,则它们的对偶式也相等。对偶规则:两个函数式相等,则它们的对偶式也相等。 应用对偶规则可将基本公式和常用公式扩展。应用对偶规则可将基本公式和常用公式扩展。 变换时注意:变换时注意:( (1) ) 变量不改变变量不

35、改变 ( (2) ) 不能改变原来的运算顺序不能改变原来的运算顺序A + AB = A A (A + B) = A 主要要求:主要要求: 了解逻辑函数式的常见形式及其相互转换。了解逻辑函数式的常见形式及其相互转换。 了解逻辑函数的了解逻辑函数的代数化简法代数化简法。1.5 逻辑函数的代数化简法逻辑函数的代数化简法 理解理解最简与最简与 - - 或式或式的标准。的标准。 逻辑式有多种形式,采用何种形式视逻辑式有多种形式,采用何种形式视需要而定。各种形式间可以相互变换。需要而定。各种形式间可以相互变换。 一、一、逻辑函数式的几种常见形式和变换逻辑函数式的几种常见形式和变换 例如例如 CBBAY )

36、(CBBA CBBA CBBA BCBA 与或表达式与或表达式 或与表达式或与表达式 与非与非 - - 与非表达式与非表达式 或非或非 - - 或非表达式或非表达式 与或非表达式与或非表达式 转换方法举例转换方法举例 与或式与或式 与非式与非式 用还原律用还原律 用摩根定律用摩根定律 CBBAY CBBA CBBA 或与式或与式 或非式或非式 与或非式与或非式 用还原律用还原律 用摩根定律用摩根定律 用摩根定律用摩根定律 )(CBBAY )(CBBA CBBA BCBA 二、逻辑函数式化简的意义与标准二、逻辑函数式化简的意义与标准 化化简简意意义义使逻辑式最简,以便设计出最简的逻辑电路,使逻辑

37、式最简,以便设计出最简的逻辑电路,从而节省元器件、优化生产工艺、降低成本和提从而节省元器件、优化生产工艺、降低成本和提高系统可靠性。高系统可靠性。 不同形式逻辑式有不同的最简式,一般先求取不同形式逻辑式有不同的最简式,一般先求取最简与最简与 - - 或式,然后通过变换得到所需最简式。或式,然后通过变换得到所需最简式。 最简与最简与 - - 或式标准或式标准 ( (1) )乘积项乘积项( (即与项即与项) )的个数最少的个数最少( (2) )每个乘积项中的变量数最少每个乘积项中的变量数最少 用与门个数最少用与门个数最少与门的输入端数最少与门的输入端数最少 三、代数化简法三、代数化简法 运用逻辑代

38、数的公式对逻辑运用逻辑代数的公式对逻辑式进行化简。式进行化简。 并项法并项法 运用运用 ,将两项合并为一项,并消去一个变量。将两项合并为一项,并消去一个变量。 ABAAB CBACBAY BA )()(CBCBACBBCAY )(CBACBA A )(FEABABY AB 吸收法吸收法 运用运用A+AB =A 和和 ,消去多余的与项。消去多余的与项。 CAABBCCAAB BDDCDAABCY BDCADABC )(BDDACACB DACACB DCDAABC 消去法消去法 运用吸收律运用吸收律 ,消去多余因子。,消去多余因子。BABAA CBCAABY CBAAB)( CABAB CAB

39、CDBAABCDBABAY )(BAABCDBABA BACDBA CDBA CDBABA 配项法配项法 通过乘通过乘 或加入零项或加入零项 进行配项,然后再化简。进行配项,然后再化简。1 AA0 AADCBADCABCBAB CBAB ABABCCAB ABABCCABAB )(ABABCABCAB CBAABC 综合灵活运用上述方法综合灵活运用上述方法 例例 化简逻辑式化简逻辑式EFBADCCAABDAADY 解:解: EFBADCCAABAY DCCAA 应用应用BABAA DCCA DCA 例例 化简逻辑式化简逻辑式CBDBDAACY 解:解: 应用应用BABAA DABCBAC DC

40、BAC 应用应用 AB CBACCBAC主要要求:主要要求: 掌握掌握最小项的概念与编号最小项的概念与编号方法,了解其主要性质。方法,了解其主要性质。掌握用卡诺图表示和化简逻辑函数的方法。掌握用卡诺图表示和化简逻辑函数的方法。 理解理解卡诺图的意义和卡诺图的意义和构成原则。构成原则。 掌握无关项的含义及其在卡诺图化简法中掌握无关项的含义及其在卡诺图化简法中的应用。的应用。 1.6逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法代数代数化简法化简法 优点:对变量个数没有限制。优点:对变量个数没有限制。缺点:需技巧,不易判断是否最简式。缺点:需技巧,不易判断是否最简式。 卡诺图卡诺图化简法化简法 优点

41、:简单、直观,有一定的步骤和方法优点:简单、直观,有一定的步骤和方法 易判断结果是否最简。易判断结果是否最简。 缺点:适合变量个数较少的情况。缺点:适合变量个数较少的情况。 一般用于四变量以下函数的化简。一般用于四变量以下函数的化简。 一、代数化简法与卡诺图化简法的特点一、代数化简法与卡诺图化简法的特点卡诺图是最小项按一定卡诺图是最小项按一定规则排列成的方格图规则排列成的方格图。 n 个变量有个变量有 2n 种组合,可对应写出种组合,可对应写出 2n 个乘积个乘积项,这些乘积项均具有下列项,这些乘积项均具有下列特点:特点:包含全部变量,包含全部变量,且每个变量在该乘积项中且每个变量在该乘积项中

42、 ( (以原变量或反变量以原变量或反变量) )只只出现一次。出现一次。这样的乘积项称为这这样的乘积项称为这 n 个变量的最小个变量的最小项,也称为项,也称为 n 变量逻辑函数的最小项。变量逻辑函数的最小项。1. 最小项的定义和编号最小项的定义和编号 ( (一一) )最小项的概念与性质最小项的概念与性质二、最小项与卡诺图二、最小项与卡诺图如何编号?如何编号?如何根据输入变量如何根据输入变量组组合写出相应最小项?合写出相应最小项?例如例如 3 变量逻辑函数的最小项有变量逻辑函数的最小项有 23 = 8 个个 将输入将输入变量取值为变量取值为 1 的代以原变的代以原变量,取值为量,取值为 0 的代以

43、反变的代以反变量,则得相量,则得相应最小项。应最小项。 简记符号简记符号ABC1 1 11 1 01 0 11 0 00 1 10 1 00 0 10 0 0最小项最小项A B CCBACBACBABCACBACBACABm7m6m5m4m3m2m1m0输入组合对应输入组合对应的十进制数的十进制数765432102. 最小项的基本性质最小项的基本性质 ( (1) ) 对任意一最小项,只有一组变量取值使它的值为对任意一最小项,只有一组变量取值使它的值为 1, 而其余各种变量取值均使其值为而其余各种变量取值均使其值为 0。三三变变量量最最小小项项表表1100000001 1 11010000001

44、 1 01001000001 0 11000100001 0 01000010000 1 11000001000 1 01000000100 0 11000000010 0 0ABCm7m6m5m4m3m2m1m0A B C 120niimFCBACBACBABCACBACBACAB( (2) ) 不同的最小项,使其值为不同的最小项,使其值为 1 的那组变量取值也不同。的那组变量取值也不同。( (3) ) 对于变量的任一组取值,任意两个最小项的乘积为对于变量的任一组取值,任意两个最小项的乘积为 0。( (4) ) 对于变量的任一组取值,全体最小项的和为对于变量的任一组取值,全体最小项的和为 1

45、。 例如例如ABC+ABC=AB3. 相邻最小项相邻最小项 两个最小项中只有一个变量互为反变量,其余变量两个最小项中只有一个变量互为反变量,其余变量均相同,称为相邻最小项,简称相邻项。均相同,称为相邻最小项,简称相邻项。 例如例如 三变量最小项三变量最小项 ABC 和和 ABC 相邻最小项相邻最小项重要特点重要特点: 两个相邻最小项相加可合并为一项,两个相邻最小项相加可合并为一项, 消去互反变量,化简为相同变量相与。消去互反变量,化简为相同变量相与。 ( (二二) ) 最小项的卡诺图表示最小项的卡诺图表示 将将 n 变量的变量的 2n 个最小项用个最小项用 2n 个小方格表示,个小方格表示,并

46、且并且使相邻最小项在几何位置上也相邻且循环相邻使相邻最小项在几何位置上也相邻且循环相邻,这样排列得到的方格图称为这样排列得到的方格图称为 n 变量最小项卡诺图,变量最小项卡诺图,简称为变量卡诺图。简称为变量卡诺图。变量取变量取 0 的代以反变量的代以反变量 取取 1 的代以原变量的代以原变量AB二二变变量量卡卡诺诺图图010 10 00 11 01 10 00 1AB010 1m0m1m2m3 0 1 2 3ABAAB BABABABAB四四变变量量卡卡诺诺图图 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10三三变变量量卡卡诺诺图图ABC0100 0111 10 m

47、6 m7 m4 m2 m3000 m0 m5001 m1 6 7 5 4 2 3 1 0ABCD0001111000 01 11 10 以循环码排列以保证相邻性以循环码排列以保证相邻性变量取变量取 0 的代以反变量的代以反变量 取取 1 的代以原变量的代以原变量ABCD0001111000 01 11 10 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10ABCDCDDCDCDCBABAABBAABCDCDBADCBADCBADCBADCBADBCABCDACDBADCBADCBADCBADCABDCABDABCDCBA相邻项相邻项在在几何位置几何位置上也相邻上也相邻

48、卡诺图特点:卡诺图特点:循环相邻性循环相邻性同一列最同一列最上与最下上与最下方格相邻方格相邻同一行最同一行最左与最右左与最右方格相邻方格相邻如何写出卡诺图方格对应的最小项?如何写出卡诺图方格对应的最小项? 已知最小项如何找相应小方格?已知最小项如何找相应小方格? 例如例如 原变量取原变量取 1,反变量取,反变量取 0。DCBA1001 ?ABCD0001111000 01 11 10 ABCD DCBA 为了用卡诺图表示逻辑函数,通常需要为了用卡诺图表示逻辑函数,通常需要先求得真值表或者标准与先求得真值表或者标准与 - - 或式或者与或式或者与 - - 或或表达式。因此,下面先介绍标准与表达式

49、。因此,下面先介绍标准与 - - 或式。或式。任何形式的逻辑式都可以转化为标准任何形式的逻辑式都可以转化为标准与与- -或式,而且逻辑函数的标准与或式,而且逻辑函数的标准与 - - 或式或式是唯一的。是唯一的。 ( (一一) ) 逻辑函数的标准与逻辑函数的标准与 - - 或式或式 三、用卡诺图表示逻辑函数三、用卡诺图表示逻辑函数每一个与项都是最小项的与每一个与项都是最小项的与 - - 或逻辑式或逻辑式称为标准与称为标准与 - - 或式,又称最小项表达式。或式,又称最小项表达式。 如何将如何将逻辑逻辑式转化式转化为为 标准与标准与- -或式呢或式呢 ? 例例 将逻辑式将逻辑式 化为标准与或式。化

50、为标准与或式。DCABCBAY ( (3) ) 利用利用A+A=A,合并掉相同的最小项。,合并掉相同的最小项。0000m00001m11100m121101m131111m15= m0 + m1 + m12 + m13 + m15=m (0,1,12,13,15)ABCDDCABDCABDCBADCBAY 解:解:( (1) ) 利用摩根定律和分配律把逻辑函数式展开为与或式。利用摩根定律和分配律把逻辑函数式展开为与或式。ABCBAY DC )(DCABCBA ABDCABCBA ( (2) ) 利用配项法化为标准与或式。利用配项法化为标准与或式。DCABABCDDCABDCABDCBADCBA

51、 ( (二二) ) 用卡诺图表示逻辑函数用卡诺图表示逻辑函数 ( (1) ) 求逻辑函数真值表或者标准与求逻辑函数真值表或者标准与 - - 或式或者与或式或者与 - - 或式。或式。 ( (2) ) 画出变量卡诺图。画出变量卡诺图。 ( (3) ) 根据真值表或标准与根据真值表或标准与 - - 或式或与或式或与 - - 或式填图。或式填图。 基基本本步步骤骤用卡诺图表示逻辑函数举例用卡诺图表示逻辑函数举例 已知已知标准标准与或与或式画式画函数函数卡诺卡诺图图 例例 试画出函数试画出函数 Y = m (0,1,12,13,15) 的卡诺图的卡诺图解:解: ( (1) ) 画出四变量卡诺图画出四变

52、量卡诺图( (2) ) 填图填图 逻辑式中的最逻辑式中的最小项小项 m0、m1、m12、m13、m15对对应的方格填应的方格填 1,其,其余不填。余不填。ABCD0001111000 01 11 10 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10 1 1 1 1 1 已已知知真真值值表表画画函函数数卡卡诺诺图图 例例 已知逻辑函数已知逻辑函数 Y 的的 真值表如下,试画真值表如下,试画 出出 Y 的卡诺图。的卡诺图。解:解:( (1) ) 画画 3 变量卡诺图。变量卡诺图。A B CY0 0 010 0 100 1 010 1 101 0 011 0 101 1

53、011 1 10ABC0100 0111 10 6 7 5 4 2 3 1 0m0m2m4m6 1 1 1 1( (2) )找出真值表中找出真值表中 Y = 1 对应的最小项,在对应的最小项,在 卡诺图相应方格中卡诺图相应方格中 填填 1,其余不填。,其余不填。已已知知一一般般表表达达式式画画函函数数卡卡诺诺图图解:解:( (1) ) 将逻辑式转化为与或式将逻辑式转化为与或式( (2) ) 作变量卡诺图作变量卡诺图找出各与项所对应的最小找出各与项所对应的最小项方格填项方格填 1,其余不填。,其余不填。 例例 已知已知 ,试画出,试画出 Y 的卡诺图。的卡诺图。)(BDCABDAY ABDAY

54、)(BDC CBDABCD0001111000 01 11 10( (3) ) 根据与或式填图根据与或式填图 1 1 1 1 1 1 1 1 1 1 AB 对应最小项为对应最小项为同时满足同时满足 A = 1, B = 1 的方格。的方格。 ABDABCD 对应最小项为同时满足对应最小项为同时满足 B = 1,C = 0,D = 1的方格的方格AD 对应最小项为同时满足对应最小项为同时满足 A = 0,D = 1的方格。的方格。四、用卡诺图化简逻辑函数四、用卡诺图化简逻辑函数 化简规律化简规律2 个相邻个相邻最小项有最小项有 1 个变量相异,相加可以个变量相异,相加可以消消去去这这 1 个变量

55、个变量,化简结果为相同变量的与;,化简结果为相同变量的与;4 个相邻个相邻最小项有最小项有 2 个变量相异,相加可以消个变量相异,相加可以消去这去这 2 个变量个变量,化简结果为相同变量的与;,化简结果为相同变量的与;8 个相邻最小项有个相邻最小项有 3 个变量相异,相加可以消个变量相异,相加可以消去这去这 3 个变量,化简结果为相同变量的与;个变量,化简结果为相同变量的与;2n 个相邻个相邻最小项有最小项有 n 个变量相异,相加可以个变量相异,相加可以消去消去这这 n 个变量个变量,化简结果为相同变量的与。,化简结果为相同变量的与。消消异异存存同同 ABCD0001111000 01 11

56、10 1 1例如例如 2 个相邻项合并消去个相邻项合并消去 1 个变量,化简结果个变量,化简结果为相同变量相与。为相同变量相与。ABCD+ABCD=ABDABCD0001111000 01 11 10 1 1例如例如 2 个相邻项合并消去个相邻项合并消去 1 个变量,化简结果个变量,化简结果为相同变量相与。为相同变量相与。ABCD+ABCD=ABDABCD0001111000 01 11 10例如例如 1 1 1 1 ABCD+ABCD+ABCD+ABCD=ACD+ACD =AD 4 个相邻项合并消去个相邻项合并消去 2 个变量,个变量,化简结果为相同变量相与。化简结果为相同变量相与。8 个相

57、邻项合并消去个相邻项合并消去 3 个变量个变量A 1 1 1 1 1 1 1 1画包围圈规则画包围圈规则 包围圈必须包含包围圈必须包含 2n 个相邻个相邻 1 方格,且必须成方形。方格,且必须成方形。先圈小再圈大,圈越大越是好;先圈小再圈大,圈越大越是好;1 方格可重复圈,但方格可重复圈,但须每圈有新须每圈有新 1;每个;每个“1”格须圈到,孤立项也不能掉。格须圈到,孤立项也不能掉。同一列最上边和最下边循环相邻,可画圈;同一列最上边和最下边循环相邻,可画圈; 同一行最左边和最右边循环相邻,可画圈;同一行最左边和最右边循环相邻,可画圈;四个角上的四个角上的 1 方格也循环相邻,可画圈。方格也循环

58、相邻,可画圈。 注意注意 ABCD+ABCD+ABCD+ABCD 卡诺卡诺 图化图化 简法简法 步骤步骤 画函数卡诺图画函数卡诺图 将各圈分别化简将各圈分别化简 对填对填 1 的相邻最小项方格画包围圈的相邻最小项方格画包围圈 将各圈化简结果逻辑加将各圈化简结果逻辑加 m15 m9 m7 m6 m5 m4 m2 m0解:解:( (1) )画变量卡诺图画变量卡诺图 例例 用卡诺图化简逻辑用卡诺图化简逻辑函数函数 Y(A,B,C,D)=m (0,2,4,5,6,7,9,15)ABCD0001111000 01 11 10( (2) )填卡诺图填卡诺图 1 1 1 1 1 1 1 1( (3) )画包

59、围圈画包围圈abcd( (4) )将各图分别化简将各图分别化简圈圈 2 个可消去个可消去 1 个变量,化个变量,化简为简为 3 个相同变量相与。个相同变量相与。Yb = BCD圈圈 4 个可消去个可消去 2 个变量,化个变量,化简为简为 2 个相同变量相与。个相同变量相与。孤立项孤立项 Ya=ABCDYc = AB循环相邻循环相邻 Yd = AD( (5) )将各图化简结果逻辑加,得最简与或式将各图化简结果逻辑加,得最简与或式DABABCDDCBAY 解:解:( (1) )画变量卡诺图画变量卡诺图 例例 用卡诺图化简逻辑用卡诺图化简逻辑函数函数 Y(A,B,C,D)=m (0,2,5,7,8,

60、10,12,14,15)ABCD0001111000 01 11 10( (2) )填卡诺图填卡诺图 1 1 1 1 1 1 1 1( (4) )求最简与或式求最简与或式 Y= 1BDA消消 1 个剩个剩 3 个个( (3) )画圈画圈BCD 消消 2 个剩个剩 2 个个DA 4 个角上的最小个角上的最小项循环相邻项循环相邻DB 找找 AB =11, C = 1 的公共区域的公共区域找找 A = 1, CD = 01 的公共区域的公共区域找找 B = 1, D = 1 的公共区域的公共区域解:解:( (1) )画变量卡诺图画变量卡诺图ABCD0001111000 01 11 10( (2) )

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论