版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、合情推理与演 绎情推.,.,.,证证明明过过程程更更离离不不开开推推理理数数学学中中在在其其中中都都包包含含了了推推理理活活动动题题的的真真伪伪等等等等数数学学家家论论证证命命代代考考古古学学家家推推断断遗遗址址的的年年能能状状态态气气象象专专家家预预测测天天气气的的可可侦侦破破案案件件警警察察医医生生诊诊断断病病人人的的病病症症例例如如样样的的推推理理那那人人们们常常常常需需要要进进行行这这样样在在日日常常生生活活中中,;.论论演演绎绎推推理理则则具具有有证证明明结结和和方方向向的的作作用用解解决决问问题题的的思思路路提提供供现现新新结结论论、探探索索和和合合情情推推理理具具有有猜猜测测和和
2、发发推推理理和和演演绎绎推推理理合合情情本本的的推推理理本本章章我我们们将将学学习习两两种种基基., )()(.,.,理理、论论证证有有据据的的习习惯惯养养成成言言之之有有作作用用数数学学以以及及日日常常生生活活中中的的感感受受逻逻辑辑证证明明在在解解数数学学证证明明的的基基本本方方法法了了特特点点从从中中体体会会证证明明的的功功能能和和反反证证法法如如证证明明的的方方法法和和间间接接法法、数数学学归归纳纳法法合合、综综如如分分析析法法明明的的方方法法接接证证直直法法的的两两类类基基本本方方同同时时我我们们还还要要学学习习证证明明段段本本手手学学结结论论的的基基成成为为获获得得数数相相辅辅相相
3、成成因因此此它它们们联联系系紧紧密密、中中的的基基本本推推理理方方法法是是公公理理体体系系作作用用整整理理和和建建构构知知识识体体系系的的合情推理与演绎推理合情推理与演绎推理1.2.,理理和和演演绎绎推推理理合合情情推推中中经经常常使使用用的的两两种种推推理理学学研研究究绍绍人人们们在在日日常常活活动动和和科科介介本本节节将将程程一一个个新新的的判判断断的的思思维维过过确确定定个个已已知知的的判判断断来来据据一一个个或或几几是是根根过过程程推推理理是是人人们们思思维维活活动动的的合情推理合情推理1.1.2.?.,.)Fermat()Goldbach(,赫赫提提出出猜猜想想的的过过程程下下面面看
4、看一一下下哥哥德德巴巴吗吗学学猜猜想想是是怎怎样样提提出出来来的的你你知知道道这这些些数数生生心心血血的的人人甚甚至至为为之之耗耗费费了了毕毕有有和和数数学学爱爱好好者者学学家家的的证证明明吸吸引引了了大大批批的的数数某某些些猜猜想想等等、歌歌尼尼斯斯堡堡七七桥桥猜猜想想等等四四色色猜猜想想猜猜想想、地地图图的的猜猜想想、费费马马如如著著名名的的哥哥德德巴巴赫赫想想数数学学中中有有各各种种各各样样的的猜猜.171330,17320, 7310:,301713,20173 ,1073:写成他有意把上面的式子改察到据说哥德巴赫无意中观.:奇质数奇质数偶数律其中反映出这样一个规?,30,20,10:
5、类似的规律呢那么其他偶数是否也有数都是偶个想法于是哥德巴赫产生了一 ,8631391002,971291000,11516, 7714, 7512, 5510, 538:6, 336, 6,的偶数再看看超过即之和的偶数是第一个等于两个奇质数显然?,你能提出一个猜想吗你能提出一个猜想吗继续上述过程继续上述过程.,?.6:,而且取得了很好的进展证明这个猜想努力许多优秀的数学家都在多少年来确的吗这是正数的和的偶数都等于两个奇质不小于任何一个哥德巴赫大胆地猜想根据上述过程.6,.,:,两个奇质数之和的偶数都等于任何一个不小于提出猜想是于而且没有出现反例和以表示成两个奇质数之他发现它们总可的验证通过对一
6、些偶数过程赫提出猜想的推理我们来考察一下哥德巴现在.,.,一般的推理一般的推理部分到整体、由个别到部分到整体、由个别到归纳推理是由归纳推理是由简言之简言之简称归纳简称归纳为为称称一般结论的推理一般结论的推理或者由个别事实概括出或者由个别事实概括出论论些特征的推些特征的推这这事物的全部对象都具有事物的全部对象都具有出该类出该类推推对象具有某些特征对象具有某些特征这种由某类事物的部分这种由某类事物的部分归纳推理归纳推理.,.180,180;,00是归纳推理是归纳推理这也这也从而对整体作出推断从而对整体作出推断试验以取得信息试验以取得信息取一部分进行观测或取一部分进行观测或所研究的对象全体中抽所研究
7、的对象全体中抽我们总是从我们总是从在统计学中在统计学中这些都是归纳推理这些都是归纳推理是是所有三角形的内角和都所有三角形的内角和都归纳出归纳出形的内角和都是形的内角和都是等腰三角形、等边三角等腰三角形、等边三角由直角三角形、由直角三角形、一切金属都能导电一切金属都能导电归纳出归纳出属能导电属能导电金金等等由铜、铁、铝、金、银由铜、铁、铝、金、银例如例如 .,子子下下面面是是一一个个数数学学中中的的例例获获得得新新结结论论新新事事实实应应用用归归纳纳推推理理可可以以发发现现., 2 , 1na1aa, 1a1a1nn1n1n项公式项公式试归纳出这个数列的通试归纳出这个数列的通且且项项的第的第已知
8、数列已知数列例例 .,.anann算出数列的前几项算出数列的前几项的递推公式的递推公式我们先根据已知我们先根据已知为此为此与序号之间的对应关系与序号之间的对应关系项项的第的第是数列是数列数列的通项公式表示的数列的通项公式表示的分析分析; 1a,1n1 时当解;3121121a,3n3时当;21111a,2n2 时当.4131131a,4n4 时当.n1a,.4,n这个数列的通项公式为由此猜想数项都等于相应序号的倒数列的前观察可得.,.,1一一种种方方向向提提供供们们的的研研究究想想可可以以为为我我但但这这个个猜猜有有待待严严格格的的证证明明猜猜想想是是否否正正确确还还虽虽然然猜猜想想一一个个了
9、了关关于于数数列列通通项项公公式式的的我我们们通通过过归归纳纳得得到到中中在在例例.,;,;,.,类类比比生生物物机机制制得得到到的的初初构构想想都都是是仿仿生生学学中中许许多多发发明明的的最最事事实实上上等等等等发发明明了了潜潜水水艇艇原原理理外外形形和和它它在在水水中中的的沉沉浮浮人人们们仿仿照照鱼鱼类类发发明明了了锯锯的的草草叶叶和和蝗蝗虫虫的的牙牙齿齿类类比比带带齿齿据据说说我我国国古古代代工工匠匠鲁鲁班班例例如如用用类类比比还还常常常常应应中中在在人人们们的的创创造造发发明明活活动动除除了了归归纳纳.:,.,在在火火星星上上也也可可能能有有性性命命存存科科学学家家猜猜想想由由此此等等
10、等等生生物物的的生生存存度度适适合合地地球球上上某某些些已已知知的的温温而而且且火火星星上上大大部部分分时时间间也也有有季季节节的的变变更更在在一一年年中中也也有有大大气气层层运运行行、绕绕轴轴自自转转的的行行星星如如火火星星也也是是围围绕绕太太阳阳一一些些与与地地球球类类似似的的特特征征发发现现火火星星具具有有作作类类比比科科学学家家们们把把火火星星与与地地球球这这个个问问题题火火星星上上是是否否有有性性命命为为了了回回答答又又如如?推理过程是怎样的推理过程是怎样的科学家做出上述猜想的科学家做出上述猜想的思考思考.,)(,个特征猜测火星也可能具有这出发有性命存在特征然后从地球的一个已知之间的
11、某些相似特征球科学家对比了火星与地在提出上述猜想过程中.,).12(,.,.球也可能具有测对于圆的特征因此我们推的点的集合到定点的距离等于定长都是即具有完美的对称性念上都有类似的地方由球与圆在形状上和概表了圆的一些性质发现定义了圆的一些概念有了比较充分的研究我们已经对于圆我们会自然地联想到圆球体时在研究例如这样的推理数学研究中也常常进行 ;,;,半径到球心的距离等于球的该点与球交于一点这样的平面我们推测可能存在对于球半径圆的切点到圆心的距离等于点切线与圆交于一圆有切线例如.;,3等等点确定一个球想空间中不共面的四个由此猜个点确定一个圆平面内不共线的 .,的切平面的切平面即球即球在的在的平面是存
12、平面是存道这样的道这样的已经知已经知.,12,并说说推理的过程并说说推理的过程特征特征中球的相关中球的相关填写表填写表类比圆的特征类比圆的特征探究探究12表表圆圆的的概概念念和和性性质质球球的的类类似似概概念念和和性性质质圆圆的的周周长长圆圆的的面面积积.点点的的连连线线垂垂直直于于弦弦中中非非直直径径圆圆心心与与弦弦.,;距距圆圆心心较较近近的的弦弦较较长长不不等等与与圆圆心心距距离离不不等等的的两两弦弦相相等等与与圆圆心心距距离离相相等等的的两两弦弦.ryyxxr ,y,x2202000径径的的圆圆的的方方程程为为为为半半为为圆圆心心以以点点.,1n,n.n5、4,得启发和联想得启发和联想
13、从中获从中获维球的情形维球的情形类比类比总可以总可以维球时维球时研究研究维球维球至至维球直维球直维球维球定义并且研究定义并且研究我们还可以我们还可以根据同样的思路根据同样的思路.,.,推理推理殊的殊的类比推理是由特殊到特类比推理是由特殊到特简言之简言之简称类比简称类比称为称为也具有这些特征的推理也具有这些特征的推理推出另一类对象推出另一类对象些已知特征些已知特征的某的某似特征和其中一类对象似特征和其中一类对象些类些类这种由两类对象具有某这种由两类对象具有某类比推理类比推理.,:)16301571,plerKe(界的秘密界的秘密能揭示自然能揭示自然它它赖的老师赖的老师是我最可信是我最可信它它别的
14、东西别的东西比胜过任何比胜过任何我珍惜类我珍惜类说说开普勒开普勒.,.,:Polya,.,等等等等与相等的类比与相等的类比不等不等无限与有限的类比无限与有限的类比量与数的类比量与数的类比数学中还有向数学中还有向平面几何中的类比问题平面几何中的类比问题有赖于有赖于求解立体几何问题往往求解立体几何问题往往引路人引路人类比是一个伟大的类比是一个伟大的曾指出曾指出利亚利亚数学家波数学家波例如例如出新问题和作出新发现出新问题和作出新发现通过类比而提通过类比而提和已经获得的知识出发和已经获得的知识出发问题问题我们可以由已知解决的我们可以由已知解决的在数学中在数学中.,2运运算算性性质质列列出出它它们们相相
15、似似的的类类比比实实数数的的加加法法和和乘乘法法例例.4. 10,算算个个方方面面来来类类比比这这两两种种运运从从上上述述因因此此我我们们可可以以特特殊殊的的地地位位别别在在加加法法和和乘乘法法中中占占有有分分而而且且都都存存在在逆逆运运算算都都满满足足一一定定的的运运算算律律由由两两个个数数参参与与运运算算实实数数的的加加法法和和乘乘法法都都是是分分析析 .,1数得的结果仍然是一个实所或乘法运算后两个实数经过加法运算解 bcacabcbacbabaababba,2即律和结合律加法和乘法都满足交换从运算律的角度考虑 a1xax0a1ax0 xa,3都有唯一解这就使得方程乘法的逆运算是除法运算是
16、减法加法的逆二者都有逆运算从逆运算角度考虑 a1aa0a,1,01;0,4即等于原来的数的积都即任意实数与类似与加法中的法中的乘相加都不改变大小任意实数与在加法中.,Galois.4这这种种运运算算性性质质的的集集合合用用来来表表示示具具有有群群的的概概念念提提出出了了数数学学家家伽伽罗罗瓦瓦法法国国天天才才的的条条运运算算性性质质有有这这数数学学中中还还有有许许多多集集合合具具.,证明这些猜想的思路证明这些猜想的思路以及以及获得四面体性质的猜想获得四面体性质的猜想象的性质象的性质通过类比这个对通过类比这个对找一个研究过的对象找一个研究过的对象我们可在平面几何中寻我们可在平面几何中寻四面体的性
17、质四面体的性质为了研究为了研究在立体几何中在立体几何中例如例如比对象比对象寻找合适的类寻找合适的类运用类比推理常常先要运用类比推理常常先要?对对象象可可以以作作为为四四面面体体的的类类比比一一类类图图形形你你认认为为平平面面几几何何中中的的哪哪探探究究.,.)(,3,;)(,4,.,.、,四四面面体体的的类类比比对对象象我我们们可可以以把把三三角角形形作作为为从从这这个个角角度度看看的的封封闭闭图图形形围围成成直直线线最最少少的的基基本本元元素素三三角角形形是是平平面面内内由由数数目目即即角角形形条条直直线线可可以以围围成成一一个个三三而而一一个个封封闭闭的的图图形形两两条条直直线线不不能能围
18、围成成在在平平面面内内围围成成的的封封闭闭几几何何体体面面平平的的基基本本元元素素它它是是空空间间中中由由数数目目最最少少个个面面围围成成四四面面体体由由目目看看从从构构成成几几何何体体的的元元素素数数例例如如对对象象选选择择适适当当的的类类比比题题的的需需要要本本原原则则是是要要根根据据当当前前问问基基度度量量等等位位置置关关系系目目四四面面体体的的几几何何元元素素的的数数如如围围成成出出发发确确定定类类比比对对象象我我们们可可以以从从不不同同的的角角度度.,想的例子想的例子得到立体图形性质的猜得到立体图形性质的猜比平面的几何中的结论比平面的几何中的结论我们就来看一个通过类我们就来看一个通过
19、类下面下面.,3空空间间四四面面体体性性质质的的猜猜想想试试给给出出的的勾勾股股定定理理类类比比平平面面内内直直角角三三角角形形例例ABCabc 1DEFP1S3S2S 211.2图图.,3,对象对象作为直角三角形的类比作为直角三角形的类比个面两两垂直的四面体个面两两垂直的四面体取有取有所以我们可以选所以我们可以选两条边垂直两条边垂直角三角形的角三角形的到直到直考虑考虑析析分分;DEFP,ABCRt,11.2是四面体是四面体相对应相对应与与所示所示如图如图;33ABCP,1ABCRt个直二面角个直二面角构成构成个面在一个顶点处个面在一个顶点处的的是四面体是四面体直角相对应的直角相对应的个个的两
20、条边交成的两条边交成与与ABCabc 1DEFP1S3S2S 211.2图图;SS,SDPE,FPD,DEFDEFP,b, aRtABC321和和面积面积的的和和的面的面是四面体是四面体相对应的相对应的的直角边边长的直角边边长与与.SPEFDEFP,cRtABC的面积的面积的面的面是四面体是四面体应的应的相对相对的斜边边长的斜边边长与与.DEFP,RtABC,四个面的面积的关系四个面的面积的关系猜想出四面体猜想出四面体中的勾股定理中的勾股定理我们可以类比我们可以类比由此由此.bac,ABCRt,11.2222得由勾股定中在道我们知所示如图解ABCabc 1DEFP1S3S2S 211.2图图.
21、SSSS,DEFP,2322212成立成立们猜想们猜想我我中中在四面体在四面体定理定理类比直角三角形的勾股类比直角三角形的勾股于是于是.?学们自己证明学们自己证明请同请同这个结论是正确的吗这个结论是正确的吗:理理过过程程概概括括为为我我们们把把前前面面所所进进行行的的推推题题出出发发从从具具体体问问. )reasoningplausible(,把他们统称为把他们统称为我们我们后提出猜想的推理后提出猜想的推理然然再进行归纳类比再进行归纳类比联想联想、经过观察、分析、比较经过观察、分析、比较理都是根据已有的事实理都是根据已有的事实归纳推理和类比推归纳推理和类比推可见可见合情推理合情推理.,:)18
22、271749,Laplace(归纳和类比归纳和类比是是理的主要工具也理的主要工具也发现真发现真使在数学里使在数学里即即曾经说过曾经说过斯斯法国数学家拉普拉法国数学家拉普拉比比较较、联联想想观观察察、分分析析、类类比比归归纳纳、猜猜想想提提出出.,;,.,下下面面再再来来看看一一个个例例子子路路和和方方向向明明思思理理常常常常能能为为我我们们提提供供证证合合情情推推证证明明一一个个数数学学结结论论之之前前和和发发现现结结论论们们猜猜想想合合情情推推理理常常常常能能帮帮助助我我之之前前得得到到一一个个新新结结论论数数学学研研究究中中的的推推理理合合乎乎情情理理合合情情推推理理是是指指通通俗俗地地说
23、说.,.,21.24另一根针上另一根针上部移到部移到把金属片从一根针上全把金属片从一根针上全按下列规则按下列规则干金属片干金属片上的若上的若有三根针和套在一根针有三根针和套在一根针所示所示如图如图例例21.2图图.2;1.1金属片上面金属片上面不能放在较小的不能放在较小的较大的金属片较大的金属片个金属片个金属片每次只能移动每次只能移动?,31n:移移动动多多少少次次最最少少需需要要号号针针号号针针移移到到个个金金属属片片从从把把试试推推测测123.n,4, 3 , 2 , 1个个金金属属片片所所需需的的次次数数进进而而归归纳纳出出移移动动中中的的规规律律性性探探究究其其个个金金属属片片的的情情
24、形形入入手手我我们们从从移移动动分分析析.1,13,3,1n次共移动了表示用符号号针移到只需把金属片从一号针时当解:, 2,2n顺序是移动的中间针号针作为我们利用金属片上面片放在较小的为了避免将较大的金属时当 ;2111号针号针移到个金属片从将第 ;3122号针号针移到个金属片从将第 ;3213号针号针移到个金属片从将第.3,231312次共移动了用符号表示为:,2n,3n移动的顺序是的情形结为则归一个整体把上面两个金属片作为时当 ;211号针号针移到把上面两个金属片从 ;3132号针号针移到个金属片从把第 .323号针号针移到把上面两个金属片从 .7,13232113321213.31次共移
25、动了用符号表示为都需要借助中间针和其中:,3,4n顺序是移动的个金属片作为一个整体把上面时当 ;2131号针号针移到个金属片从把上面 ;3142号针号针移到个金属片从把第 .3233号针号针移到个金属片从把上面.15,231312233121231312323112231312次共移动了用符号表示为.15, 7 , 3 , 14, 3 , 2 , 1,构成的数列个金属片所需次数我们得到依次移动至此. 1215, 127, 123, 121:,4321下规律可以发现其中蕴含着如观察这个数列.Nn12aa,a,31n:nnnn的通项公式为则数列次最少需要移动针号号针移到个金属片从若把由此我们猜想?
26、,31n数数呢呢才才能能达达到到最最少少的的移移动动次次怎怎样样移移动动号号针针号号针针移移到到个个金金属属片片从从把把探探究究 ;211n1号针号针移到两个金属片从将上面:,n.n,4, 3 , 2 , 1n可分为下列三个步骤个金属片时当移动方法个金属片都适用的移动归纳出对我们可以时的移动方法通过探究上述 ;31n2号针号针移到个金属片从将第 .321n3号针号针移到个金属片从将上面.n1n,n个金属片的任务个金属片和移动一次第转化为移动两次个金属片的任务这样就把移动个金移动个金属片片和移动一次第个金属个金属片需要移动两次而移动2n,1n2n1n可得递推公式根据这个过程的情形个金属片直到转化
27、为移动如此继续个金属片个金属片和移动一次第需要移动两次,.1,2nn 3 3.1n1a2a, 1a1nn1.,正确的是可以证明上述通项公式从这个递推公式出发.,未必可靠猜想仅仅是一种论由合情推理所获得的结一般来说波波利利亚亚争争议议的的和和暂暂时时的的合合情情推推理理是是冒冒险险的的、有有. .,4177006641297967294412F5,Euler,.Nn12:,5376512,25712,1712, 512,5n43212522222从从而而推推翻翻了了费费马马的的猜猜想想不不是是质质数数个个费费马马数数第第发发现现善善于于计计算算的的欧欧拉拉之之后后半半个个世世纪纪这这就就是是著著
28、名名的的费费马马猜猜想想数数的的数数都都是是质质任任何何形形如如猜猜想想于于是是他他用用归归纳纳推推理理提提出出都都是是质质数数法法国国数数学学家家费费马马观观察察到到例例如如 .F,n记作记作通常称为费马数通常称为费马数 .1 ,x2xxf62函函数数上上是是增增在在证证明明函函数数例例 .xfxf,xx,x,x:xfy,212121则有则有若若量的两个值量的两个值在给定区间内任取自变在给定区间内任取自变满足满足即函数即函数义义提是增函数的定提是增函数的定证明本例所依据的大前证明本例所依据的大前分析分析 .,1 ,x, x2xxf2这这是是证证明明本本例例的的关关键键的的定定义义满满足足增增
29、函函数数小小前前提提是是 .2xxxxx2xx2xxfxf,xx,1 ,x,x1212222121212121且任取证明; 0 xx,xx1221所以因为.02xx,xx, 1x,x122121所以因为 .xfxf, 0 xfxf ,2121即因此 .1 ,x2xxf, ,2上是增函数在得三段论根据于是.,结论必定是正确的结论必定是正确的正确的正确的只要前提和推理形式是只要前提和推理形式是在演绎推理中在演绎推理中 ?2?1.21y,21y,ayxxx为什么为什么推理的结论正确吗推理的结论正确吗上面的推理形式正确吗上面的推理形式正确吗是增函数是增函数所以所以是指数函数是指数函数而而是增函数是增函
30、数因为指数函数因为指数函数思考思考大前提大前提小前提小前提结论结论.,1a0,ay,x的所以所得的结论是错误是减函数因为指数函数但大前提是错误的正确的形式理推上述 .,10,.推推出出所所有有命命题题演演绎绎推推理理利利用用条条公公理理和和公公设设出出发发它它从从型型的的演演绎绎系系统统就就是是一一个个典典原原本本欧欧几几里里得得的的例例如如系系的的思思想想建建立立各各门门学学科科体体推推理理来来多多士士德德还还提提出出了了用用演演绎绎亚亚里里德德创创立立的的是是由由古古希希腊腊的的亚亚里里士士多多三三段段论论.,:.,),(出出尽尽可可能能多多的的结结论论推推利利用用尽尽可可能能少少的的前前提提公公理理化化方方法法的的精精髓髓是是法法称称为为公公理理化化方方方方法法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年夏季食品供应与配送合同
- 《冯梦龙文艺思想研究》
- 《髌骨张力板固定系统的有限元分析》
- 《英式橄榄球项目制胜规律的训练学研究》
- 《不同成绩选手华尔兹舞双左疾转动作运动学参数对比分析》
- 第02讲物质的量浓度-2025年高考化学卓越讲义
- 2024年户外广告项目合作合同
- 2024年河北全国客运资格证模拟考试
- 2024年江西客运上岗证多少分算合格
- 专题04幂函数指数函数与对数函数(练习)(原卷版)
- 水工岩石分级及围岩分类
- 基因扩增实验室常用仪器使用课件
- 2023年营养师、营养指导员专业技能及理论知识考试题库(附含答案)
- 斜井敷设电缆措施
- 施工机械设备租赁实施方案
- 牙膏产品知识课件
- 液化气站人员劳动合同范本
- 第一章 教育政策学概述
- 常见土源性寄生虫演示文稿
- 全员育人导师制学生谈话记录
- 了解学前儿童科学领域核心经验
评论
0/150
提交评论