陈 2 轴向拉伸和压缩_第1页
陈 2 轴向拉伸和压缩_第2页
陈 2 轴向拉伸和压缩_第3页
陈 2 轴向拉伸和压缩_第4页
陈 2 轴向拉伸和压缩_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 FFF F拉伸拉伸压缩压缩 杆件在轴向荷载作用下,将发生轴向拉伸或压缩。杆件在轴向荷载作用下,将发生轴向拉伸或压缩。 一、轴向拉(压)杆的内力一、轴向拉(压)杆的内力轴力轴力FFFmmFNPNPFFNx, 0; 0 。 内力的作用线通过截面形心,即沿杆轴线作内力的作用线通过截面形心,即沿杆轴线作 用,故称为轴力用,故称为轴力。 二、轴力图二、轴力图 一般情况,拉压杆件各部分的横截面上,轴力是不尽相一般情况,拉压杆件各部分的横截面上,轴力是不尽相同。表示轴力沿杆件轴线变化的情况称为同。表示轴力沿杆件轴线变化的情况称为。 轴力图的画法步骤如下:轴力图的画法步骤如下: 画一条与杆的轴线平行且与杆等

2、长的直线作基线;画一条与杆的轴线平行且与杆等长的直线作基线; 将杆分段,凡集中力作用点处均应取作分段点;将杆分段,凡集中力作用点处均应取作分段点; 用截面法,通过平衡方程求出每段杆的轴力;画受力用截面法,通过平衡方程求出每段杆的轴力;画受力图时,截面轴力一般假设为正。图时,截面轴力一般假设为正。 按大小比例和正负号,将各段杆的轴力画在基线两侧,按大小比例和正负号,将各段杆的轴力画在基线两侧,并在图上表出数值和正负号。并在图上表出数值和正负号。例例1 画图示杆的轴力图。画图示杆的轴力图。kN60kN80kN50kN30 kN60kN30kN20轴力图轴力图kN60FN1kN60kN80FN2kN

3、30FN3第一段第一段: 0 xF0601NFkNFN601第二段第二段: 0 xF080602NFkNFN202第三段第三段: 0 xF0303NFkNFN303 例例2 画图示杆的轴力图。画图示杆的轴力图。kN10kN4kN8 轴力图轴力图kN8kN4kN6 例例3 长为长为l ,重为,重为W 的均质杆,上端固定,下端受一轴向拉的均质杆,上端固定,下端受一轴向拉 力力P 作用,画该杆的轴力图。作用,画该杆的轴力图。lPxPxFN 轴力图轴力图0; 0 xPFFNxxlWPxPFNPFFxNNmin; 0WPFFlxNNmax;PP+W 一、横截面的正应力一、横截面的正应力 拉压杆横截面上只

4、有正应力而无剪应力,忽略应力集中拉压杆横截面上只有正应力而无剪应力,忽略应力集中的影响,横截面上的正应力可视作均匀分布的,于是有的影响,横截面上的正应力可视作均匀分布的,于是有AFN 正应力正负的规定与轴力相同,以拉为正,以压为负。正应力正负的规定与轴力相同,以拉为正,以压为负。 例例4 已知已知A1=2000mm2,A2=1000mm2,求图示杆各段横截,求图示杆各段横截 面上的正应力。面上的正应力。 kN60kN20ABCDA2kN20kN40 轴力图轴力图A1MPaAFABNAB202000104031MPaAFBCNBC401000104032MPaAFCDNCD20100010203

5、2 二、斜截面的应力二、斜截面的应力FFmmmmFFNmmFpAFAFpNA 斜截面面积斜截面面积coscos/AFAFpNN2coscos p2sin2cossinsin pk 拉压杆横截面的应力并不完全是均匀分布的,当横截面拉压杆横截面的应力并不完全是均匀分布的,当横截面上有孔或槽时,在截面曲率突变处的应力要比其它处的应力上有孔或槽时,在截面曲率突变处的应力要比其它处的应力大得多,这种现象称为大得多,这种现象称为。PPPPP 应力集中应力集中的概念的概念 五、拉压杆的强度条件五、拉压杆的强度条件 拉压杆在正常情况下不发生破坏的条件是:拉压杆在正常情况下不发生破坏的条件是:拉压杆的拉压杆的最

6、大工作应力(横截面的最大正应力)不超过材料的许用最大工作应力(横截面的最大正应力)不超过材料的许用应力。应力。 AFNmax其中其中 为材料的为材料的 nu其中其中 u 为材料为材料破坏时破坏时的应力,称为的应力,称为即等截面受拉压杆的强度条件:即等截面受拉压杆的强度条件: 根据根据强度条件可解决三种不同类型的强度计算问题。强度条件可解决三种不同类型的强度计算问题。 强度校核强度校核 AFNmax等截面杆(等截面杆(A=常数):常数):AFN maxmax等轴力杆(等轴力杆(FN=常数):常数):minmaxAFN 变截面变轴力杆:分别计算各危险截面的应力,取其变截面变轴力杆:分别计算各危险截

7、面的应力,取其最大者进行强度校核。最大者进行强度校核。 确定截面尺寸确定截面尺寸 NFA 确定容许荷载确定容许荷载首先确定容许轴力首先确定容许轴力 AFN再根据轴力与荷载的平衡关系计算容许荷载。再根据轴力与荷载的平衡关系计算容许荷载。 例例4 已知已知A1=200mm2,A2=500mm2 ,A3=600mm2 , =12MPa,试校核该,试校核该杆的强度。杆的强度。A1A2A32kN2kN9kN2kN4kN5kN MPaAFN102002000111MPaAFN85004000222MPaAFN33. 86005000333 MPaMPa12101max 满足强度要求,此杆安全。满足强度要求

8、,此杆安全。 例例5 图示结构中,拉杆图示结构中,拉杆AB由等边角钢制成,许用应力由等边角钢制成,许用应力 =160MPa,试选择,试选择等边角钢的型号。等边角钢的型号。mkNq/60ABC1.8m2.4mmkNq/60CAFNFCxFCy解:解:取杆取杆AC为研究对象为研究对象 ; 0Cm028 . 18 . 18 . 154qFNkNFN5 .67 2236322. 410422. 010160105 .67cmmFAN由型钢表查得由型钢表查得45455等边角钢等边角钢 例例6 图示支架中,图示支架中,AB为圆截面钢杆,直径为圆截面钢杆,直径d=16mm,许用应力,许用应力 1=150MP

9、a; AC为方形截面木杆,边长为方形截面木杆,边长l=100mm,许用应力,许用应力 2=4.5MPa。求容许荷载。求容许荷载P。 1.5m2.0mABCPAPFN1FN2解解: 111AFN 222AFN取结点取结点A为研究对象。为研究对象。054; 02PFFNy254NFP 053; 012NNxFFF134NFP 1.5m2.0mABCPAPFN1FN2 211114343434dAFPN单考虑单考虑AB杆:杆:kN212.401016101503626 22222545454lAFPN单考虑单考虑AC杆杆:kN3610100105 . 454626P = 36kN例例7 图示结构中,

10、已知图示结构中,已知P=2kN,杆,杆CD的截面面积的截面面积A=80mm2,许用应力许用应力 =160MPa,试,试校核杆校核杆CD的强度并计算容许荷载。的强度并计算容许荷载。30aaABPCD30ABPCFNFAxFAy解解:0221; 0aPaFmNAkNPFN84 MPaAFN100808000 CD 杆安全杆安全 30aaABPCD30ABPCFNFAxFAy AFN kNAFPN2 . 310801016041414166二、二、 拉压变形拉压变形FFlbl1b1(一)、变形公式(一)、变形公式轴向变形均匀:轴向变形均匀:constLLEANANEEANLL EAEA:截面抗拉压刚

11、度截面抗拉压刚度横向变形:横向变形:bbbbb1 泊松比泊松比讨论:讨论:公式适用条件公式适用条件等直杆、等直杆、N N、A A、E E为常数、线弹性为常数、线弹性(二)、变形计算(二)、变形计算 例:计算图示变截面杆的轴向变形Fl2l22l3Faaaa/2已知:F =15kN,l = 1m,a = 20mm, E = 200GPa求: l解:kN30221FNNN153kFNNx-30 kN15 kN222231mm200,mm400AaAAm1,m5 .0231lll333222111321EAlNEAlNEAlNllllmm844.00094.075.01875.0作轴力图3-31-12

12、-221LLcossincossin21AyAxLAyAxL杆的投影在是11ALFA例:计算图示A点位移 已知:L,F,A1,A2, E1,E2求:A解: 法1、圆弧定交点AA截面法可求N1,N2和画圆弧求AA距离法2、切线代圆弧定交点A”AA”杆的投影在是22AL杆的投影在是nALn22)()(AyAxAAyAxA和分解为杆的投影之和在和则:iAyAxLiF 30杆杆1杆杆2A例例2-6 2-6 设晾衣架设晾衣架GPaEGPaEmmAmmAmlmlkNF200,10,7,1200,73.1,2,121222112求:A点的位移A 解:NkNNkN120 871 ., lmm1690 871

13、7310101012000 125 . lmm26912102001071 43 .AA l2 l1x mmlx125.01 mmtglly045.3217.0828.2sin12 AAxymm 223 05.y A 2l A1l 工程中所用的材料多种多样,不同的材料受力后所表现工程中所用的材料多种多样,不同的材料受力后所表现的力学性质是不同的。只有掌握了材料的力学性质,才能根的力学性质是不同的。只有掌握了材料的力学性质,才能根据构件的受力特征选择合适的材料。据构件的受力特征选择合适的材料。 根据材料的力学性质可分为两大类:根据材料的力学性质可分为两大类: 拉断时只有很小的塑性变形称为拉断时只

14、有很小的塑性变形称为,如玻璃、陶,如玻璃、陶瓷、砖石、铸铁等。瓷、砖石、铸铁等。 拉断时有较大的塑性变形产生称为拉断时有较大的塑性变形产生称为,如钢材、,如钢材、铜等。铜等。 标准试件标准试件拉伸试件拉伸试件dh压缩试件压缩试件AP 根据低碳钢拉伸时记录下来的拉力根据低碳钢拉伸时记录下来的拉力P 与变形与变形 关系曲关系曲线可得应力线可得应力-应变曲线应变曲线( - 图图)lllMPa310弹性阶段弹性阶段: 比例极限比例极限ptanE弹性模量弹性极限弹性极限e屈服阶段:屈服阶段: 屈服极限屈服极限s强化阶段:强化阶段:强度极限强度极限b颈缩阶段:颈缩阶段: 局部尺寸缩小断裂lll1100延伸

15、率延伸率AAA1100断面收缩率断面收缩率强度强度指标指标塑性塑性指标指标pesbpepe 冷作硬化:比例极限提,冷作硬化:比例极限提,屈服消失,塑性降低。屈服消失,塑性降低。三三 其它塑性材料的拉伸性质其它塑性材料的拉伸性质低碳钢低合金钢高强钢0 2 . 0 2.名义屈服极限:0 2 .铝合金黄铜 无明显屈服现象的塑性材料无明显屈服现象的塑性材料 0.2 0.2 名义屈服应力名义屈服应力: : 0.2此类材料的失效应力。此类材料的失效应力。割线斜率 ; tgE 铸铁拉伸时的力学性质铸铁拉伸时的力学性质bL 铸铁拉伸时无比例阶段、屈服阶段、缩颈阶段。铸铁拉伸时无比例阶段、屈服阶段、缩颈阶段。b

16、l 三、材料压缩时的力学性质三、材料压缩时的力学性质低碳钢压缩时的力学性质低碳钢压缩时的力学性质 低碳钢压缩时的低碳钢压缩时的 曲线,在屈服阶段之前与拉伸时基曲线,在屈服阶段之前与拉伸时基本相同,属拉压同性材料。只有在进入强化阶段之后,二者本相同,属拉压同性材料。只有在进入强化阶段之后,二者才逐渐分离。才逐渐分离。 铸铁压缩时的力学性质铸铁压缩时的力学性质 y -铸铁压缩强度铸铁压缩强度极限;极限; y (4 6) L 铸铁压缩时强度铸铁压缩时强度极限比拉伸极限比拉伸时强度时强度极限大得多,属拉压异极限大得多,属拉压异性材料;脆性材料抗压不抗拉。性材料;脆性材料抗压不抗拉。 nubsu2 .

17、01、容许应力:、容许应力:2、极限应力:、极限应力:3、安全系数:、安全系数:有明显屈服阶段的塑性材料有明显屈服阶段的塑性材料无明显屈服阶段的塑性材料无明显屈服阶段的塑性材料脆性材料脆性材料 24 剪切与挤压的强度剪切与挤压的强度计算计算一、一、 剪切强度计算剪切强度计算FFnn(合力)(合力)FPFP铆接件铆接件FnnFS剪切面nn(合力)(合力)FFFFFFFssx, 0; 0Q为剪切面的内力,称为为剪切面的内力,称为。P PQ 设剪切面的剪力沿截面是均匀分布的,则有设剪切面的剪力沿截面是均匀分布的,则有ssAF 为为剪切面的剪应力,剪切面的剪应力,As为剪切面的面积。为剪切面的面积。为

18、为 ssAF 为容许为容许切应力,由材料破坏时的极限剪应力除以安全系数。切应力,由材料破坏时的极限剪应力除以安全系数。二、二、 挤压强度计算挤压强度计算FPbs=F实际挤压面计算挤压面P实际挤压面计算挤压面挤压应力挤压应力bsbsbsAP Pbs为挤压力,为挤压力,Abs为计算挤压为计算挤压面的面积。面的面积。挤压强度条件挤压强度条件bsbsbsbsAP bs为容许为容许挤压应力,由挤压应力,由 极限挤压应力除以安全系数。极限挤压应力除以安全系数。例例8 图示铆接件,图示铆接件,P=100kN,铆钉的直径,铆钉的直径d=16mm,容许剪应,容许剪应 力力 =140MPa,容许挤压,容许挤压应力

19、应力 bs=200MPa;板的厚度;板的厚度 t=10mm ,b=100mm,容许正,容许正应力应力 =170MPa,试校核,试校核铆铆 接件的强度。接件的强度。PPdttPPb 铆钉(或螺栓)连接件要安全工作,铆钉即要满足铆钉(或螺栓)连接件要安全工作,铆钉即要满足,又要满足,又要满足,同时板还要满足,同时板还要满足PPdttFbF/4F/4F/4F/4F/43F/4F 上板受力图上板受力图上板轴力图上板轴力图F/4F/4铆钉受力图铆钉受力图 多铆钉连接件,为计算方便,各铆钉受力可视作相同。多铆钉连接件,为计算方便,各铆钉受力可视作相同。铆钉剪应力铆钉剪应力12416101004/4/232MPadFAFssF/4F/4铆钉挤压应力铆钉挤压应力15610164101004/3bsbsbsbsMPadtFAF铆钉满足强度条件,安全。铆钉满足强度条件,安全。FbF/4F/4F/4F/4F/43F/4F 上板受

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论