空气质量远程监测系统设计毕业设计(论文)_第1页
空气质量远程监测系统设计毕业设计(论文)_第2页
空气质量远程监测系统设计毕业设计(论文)_第3页
空气质量远程监测系统设计毕业设计(论文)_第4页
空气质量远程监测系统设计毕业设计(论文)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 毕业设计(论文) 题 目:空气质量远程监测系统 系 别:电气工程系 专 业:自动化 班 级: 学 号: 学生姓名: 指导老师: 年5月 空气质量远程监测系统设计 摘 要随着我国经济的快速发展,有效促进我国电子科学等技术的高速发展,因此也带动了相关监测技术的不断升级换代,随着人们对环境的关注度越来越大,因此当前监测技术相对落后无法满足人们日益增长的物质文化需求,因此需要加快空气质量远程监测系统的设计,从而能够实时环境数据。本文以环境中温度湿度、NO2、SO2 、PM2.5等气体浓度粉采集,GPRS 无线传输,实时显示并存储为主要研究内容。首先详细分析了课题的研究背景及意义,详细分了国内外研究现

2、状,针对空气质量监测系统进行了整体方案的设计,详细分析了监测系统的工作原理及无线传输方案选择及传输原理,其次对控制质量远程监测系统的硬件及软件方案进行了设计,包含:传感器的选择、时钟系统设计、扩展外部存储器、GPRS无线传输模块以及电源模块等,软件进行了系统初始化及数据采集和处理的流程设计。通过本文进行的空气质量远程监测系统设计,能够良好的解决空气质量监测系统开发周期长,难度大等问题,便于居民实时获取环境各项参数数据。关键词:空气质量检测;单片机;GPRS无线传输;远程系统Air quality remote monitoring system ABSTRACTWith the rapid d

3、evelopment of economy in our country, effectively promote the rapid development of electronic science and technology in China, which led to the monitoring technology of continuously upgrading, as peoples increasing attention to the environment, the current monitoring technology is relatively backwar

4、d, therefore, cannot meet peoples growing material and cultural needs, so the need to speed up the air quality of the remote monitoring system design, which can real-time environmental data.This paper collects the gas concentration powder such as temperature humidity, NO2, SO2 and PM 2.5 in the envi

5、ronment, the GPRS wireless transmission, real-time display and storage is the main research content. First analyzed the research background and significance, points in detail the research status at home and abroad, for air quality monitoring system for the overall scheme design, analyzes the working

6、 principle of monitoring system and wireless transmission scheme selection and transmission principle of second to control the quality of the remote monitoring system hardware and software solutions for the design, include: the selection of sensors, the clock system design, expand the external stora

7、ge, GPRS wireless transmission module and power module, the software system initialization and process design of data acquisition and processing.Key words:Air quality testing; Single chip microcomputer; GPRS wireless transmission; The remote system目 录TOC o 1-3 h u HYPERLINK l _Toc10072 摘 要 PAGEREF _

8、Toc10072 1 HYPERLINK l _Toc20351 ABSTRACT PAGEREF _Toc20351 2 HYPERLINK l _Toc5880 1. 绪论 PAGEREF _Toc5880 4 HYPERLINK l _Toc3826 1.1 论文的研究背景及意义 PAGEREF _Toc3826 4 HYPERLINK l _Toc20802 1.2 国内外现状以及发展趋势 PAGEREF _Toc20802 4 HYPERLINK l _Toc2892 1.2.1 国外研究现状 PAGEREF _Toc2892 4 HYPERLINK l _Toc6957 1.2.2

9、 国内发展现状 PAGEREF _Toc6957 4 HYPERLINK l _Toc11968 PAGEREF _Toc11968 6 HYPERLINK l _Toc29392 2.1 监测系统的工作原理和组成 PAGEREF _Toc29392 6 HYPERLINK l _Toc4339 2.2 GPRS网络的基本工作原理与组网 PAGEREF _Toc4339 6 HYPERLINK l _Toc898 2.2.1 GPRS工作的基本原理 PAGEREF _Toc898 7 HYPERLINK l _Toc24858 2.2.2 GPRS组网方案的选择 PAGEREF _Toc248

10、58 7 HYPERLINK l _Toc5111 PAGEREF _Toc5111 9 HYPERLINK l _Toc5668 3.1 硬件的总体设计 PAGEREF _Toc5668 9 HYPERLINK l _Toc1600 3.2 传感器的选用以及其调理电路 PAGEREF _Toc1600 9 HYPERLINK l _Toc15672 3.2.1 温湿度 PAGEREF _Toc15672 9 HYPERLINK l _Toc218 3.2.2 气体传感器 PAGEREF _Toc218 10 HYPERLINK l _Toc16648 PAGEREF _Toc16648 11

11、 HYPERLINK l _Toc20786 3.3 时钟系统设计 PAGEREF _Toc20786 12 HYPERLINK l _Toc6341 3.4 扩展外部存储器 PAGEREF _Toc6341 12 HYPERLINK l _Toc23367 3.5 GPRS模块的设计 PAGEREF _Toc23367 13 HYPERLINK l _Toc958 3.6 电源模块设计 PAGEREF _Toc958 15 HYPERLINK l _Toc18255 PAGEREF _Toc18255 17 HYPERLINK l _Toc24304 4.1 数据采集与处理程序设计 PAGE

12、REF _Toc24304 17 HYPERLINK l _Toc25989 4.2 硬件系统的初始化 PAGEREF _Toc25989 18 HYPERLINK l _Toc19467 4.3 数据采集采集与处理 PAGEREF _Toc19467 19 HYPERLINK l _Toc16792 PAGEREF _Toc16792 22 HYPERLINK l _Toc24000 参考文献 PAGEREF _Toc24000 23 HYPERLINK l _Toc27213 致 谢 PAGEREF _Toc27213 26 HYPERLINK l _Toc23373 附录一 检测主程序程

13、序 PAGEREF _Toc23373 26绪论1.1 论文的研究背景及意义近些年来,我国环境持续恶化,各地均不断陷入雾霾严重污染的环境,由于雾或霾对人体具有较大的危害,因此当上述危害天气出现后,对我国的各个交通体系具有严重影响,导致公路、铁路、供电系统及其他交通运输领域出现造成重要影响,此外还会恶化整个生态环境。因此为了能够良好保护自然资源,因此长期以来国家非常重视企业的节能减排等工作,相继出台多种保护措施,保护环境。我国在环境监测等领域仪器水平还不搞,因此当前针对环境的监测大多采用的人工采集及计算机分析的方式,为了能够有效提高环境监测效率,因此国家大力支持相关行业科技水平,不断提高监测系统

14、的智能化、无线化、网络化等发展方向。因此为了提高空气质量远程监测系统,因此本文采用基于GPRS技术的环境温湿度、二氧化碳、二氧化硫等参数的实时监测系统,并通过GPRS网络接入的方式,从而有效的实现与远程计算机通信系统,从而完成各项数据的传输,达到试试监测环境变化的目的。1.2 国内外现状以及发展趋势1.2.1 国外研究现状当前国外发达国家率先开展了环境监测等系统的研发工作,如今已经取得了非常显著的研究成果,其中很多技术应用到实际当中,而且大批具有科研成果和技术专利,为环境监测提供有力的技术支持,如美国从上世纪70年代就已经开展空气质量远程监测系统额眼睛工作,经过几十年的发展,已经建立了较为完善

15、的质量监测体系,涉及的国家各个地区十分全面,而且还采用了一套完备的质量保证和质量控制(QA/QC)体系,保障各项采集数据的有效性、完成采集和传输等工作,从而使得监测数据具有良好的可靠性和准确性。尽管国外起步很早,也建立了相对较为完善的空气远程监测体系,但是可以看到,国外的很多监测体系仍然存在很多的问题,如许多监测站点设置的不合理,而且西方很多国家建立的体系没有实现数据共享,因此无法有效的实现质量数据共享机制,此外还有各个国家质检的联网联调的不足,随着科学技术的快速发展,特别是无线通信技术的快速提升,当前已经能够很好的处理监测环境数据、空气质量预测分析、动态化显示等功能,但仍然存在很大的发展空间

16、。1.2.2 国内发展现状我国近些年随着对空气质量的重视,因此不断加快空气质量远程环境监测体系,尽管我国起步较晚,技术相对较为落后,而且是以城市为基础建立起来的监测体系,因此当前我国重点的监测数据有空气的温湿度变化、二氧化硫、二氧化碳、。从2000年开始,为了加大空气质量的监测和整治力度,国家加大对相关领域科技研发的力度,截止到2006年底,我国各大城市相继建立了有效且完整的空气质量远程监测体系,且已经能够很好的实现各个省区与重点城市之间的站点联网数据共享等功能,尽管我国已经建立了很多的空气监测站,由于技术相对较为落后以及意识薄弱等环节,因此需要进一步提升科技水平和人员素质。 2.空气质量监测

17、系统的总体设计2.1 监测系统的工作原理和组成本文设计的监测系统主要包含如下几个模块:温湿度传感器模块、气体传感器模块、空气颗粒物传感器模块等,其中使用的硬件设备有单片机其型号为MSP430F149、无线输出传输和接收的GPRS模块、和以及控制硬件设备的软件 labVIEW软件模块的那个组成单元构成,首先单片机需要采集传感器发出的一系列电压信号,然后将其进行相关的数模转换,从而得到有关空气气量浓度值。然后将相对应的数据打包成为要求的二进制数码,一般用ASCII然后将对应的数据通过GPRS模块完成数据的传输,经过无线传输模块后相关数据传输至上位机监测中心,经过计算机的处理和分析、运算和显示,从而

18、实现空气质量远程监测功能,由于采用的软件通过软件的编程语言实现,提供LabVIEW因此需要提软件的运行环境,从而得到有关污染气体的浓度值,当超出要求数值情况下,需要发出相关的报警信号。本文采用的无线远程监测系统的网络结构图如3.1所示:图2.1 系统的结构原理图根据图2.1所示的结构原理图可以清晰看到系统的流程图如下:首先在检测现场出安装相关的监测终端设备,通过设立的各个传感器获取各项采集数据,然后将获取的数据经过简单的运算处理,经过GPRS无线传输模块上传至上位机的监测中心处。其中监测终端主要实现两部分功能:1、数据的采集工作,可有效的采集现场的各个数据信息,2、设置无线通信GPRS模块。本

19、文设计的无线传输模块采用为GPRS网络,从而实现各个数据的传输。2.2 GPRS网络的基本工作原理与组网2.2.1 GPRS工作的基本原理GPRS是当前发展十分成熟的网络通信模式,该通信方式在GSM基础上增加了部分硬件设备此外还针对传输过程中使用的软件进行了必要的升级,当前可以构成一个新的网络结构实体,从而能够更好的提供端到端以及其他的无线IP传输功能。采用GPRS网络方式不仅具有良好的GSM实现的所有功能,而且还增加了很多能够进行分组数据单元提供无线数据业务。由于使用GPRS网络业务的每个用户相互之间均相互独立,主要原因在于采用的GPRS无线网络采取的网络结构不同,采用IP的网络结构方式,能

20、够为每一个用户分配独立的IP地址,从而实现了移动用户到网络端到端的各项数据业务应用,当前使用的GPRS系统网络结构如图2.2所示。图2.2 GPRS 系统的网络结构1)PCU:表示的为分组数据处理与控制单元,通过上述模块能够很好的在BSC与SGSN之间建立良好的基于帧中继的Gb接口,主要完成的功能是数据业务和分离电路功能,由于可以将PCU插入到BSC单元模块中,因此该模块可以独立工作。2)SGSN:表示的为GPRS服务的支持结点,能够清晰的记录移动台的当前位置发生变化的各项数据,此外还能够完成在移动台与GGSN之间移动分组数据的接收和发送等功能,该模块与MSC处于同等水平,此外还能够良好的跟踪

21、MS的存储单元,从而更好的实现接入控制和安全管理等功能,并通过帧中继将相关数据传输到基站接收模块中。3)GGSN:表示的为GPRS网关的支持结点,该模块时连接GSM网络与外部交换系统的网关,主要实现的功能能够良好的支持与外部分组交换数据的互通和传输,此外还可完成基于IP的GPRS骨干网和SGSN连通功能。2.2.2 GPRS组网方案的选择本文采用GPRS无线终端要能够满足TCP/IP相关的协议标准,因此使得该方法与其他的传输模块存在一定的区别,在监测中心处,往往要求设置一台能够连接网络的PC机,从而更好的实现PC机与GPRS模块进行数据通信等功能,此外还要结合不同的需求,从而制定恰当的组网方案

22、,如图2.3所示是当前应用较为广泛的GPRS通信组网模式。图2.3 GPRS通信组网模式3.空气质量检测终端硬件设计设置检测终端主要完成的目标是采集空气质量等相关数据,采集完毕后经过一定的处理后通过无线GPRS模块上传至监测中心,每隔一定时间监测中心都进行数据的更新。该系统主要包含五个模块:传感器的选用、时钟模块、扩展外部存储器、GPRS模块、电源供电模块。 硬件的总体设计图3.1 检测终端的原理图如图3.1所示为检测终端的原理图,采用的单片机MSP430F149的两个USART串口一个与无线传输模块连接在一起,另外一个作为系统的扩展串口,其中根据设计要求,还设定了PM2.5 、传感器,温湿度

23、传感器以及气体浓度采集传感器;为了保障数据存储,因此可以扩展外存储,保障时钟系统具有良好的实时性。3.2 传感器的选用以及其调理电路本文设计的采集系统很多传感器均设置在外部,能够有效的采集现场空气质量,主要包含温湿度传感器,气压传感器,气体传感器(NO2,CO2,SO2)。为了能够节约单片机的外部接口,因此选择的各个传感器满足系统实时性的要求,因此采用二线接口数字式传感器,由于输出的为数字量,因此无需经过模拟量的数字化,从而简化系统运行复杂性。3.2.1 温湿度传统的温湿度测量比较麻烦,工作量巨大,往往将相关电路设置在调理电路上,经过复杂运算过程,因此使得输出的数据精度较低,此外传统的电路也无

24、法保证各个器件的稳定性、安全性、可靠性、非线性等获得均衡,因此给系统的开发和设计带来很多不便。因此本文采用型号SHT11的新式的数字式传感器,有瑞士Sensit-ion公司生产,该产品最大的特点在于采用传感器技术与CMOSens技术有机结合在一起。图3.2 SHT11外形及其管脚示意图3.2.2 气体传感器本系统设计的气体传感器采用的为TGS-2系列电阻式传感器以及MEMBRAPCR公司的SO2气体传感器组成本系统的气体传感器检测,其中采用SO2/MA20用来检测空气中SO2以及其他气体的浓度的变化,具有价格低、使用年限长等优点,其中采用的传感器当处理不同浓度气体是易引发敏感电阻值的变化,此时

25、信号调理部分能够直接完成后续数据的处理,因此往往选择简单且具有较小的噪声的电路,根据传感器电阻的变化能够真实的反映出输出信号的变化,此外设置的信号调理电路在一定范围要求内能够准确的获取阻值的变化。当前调理方法使用较多的有分压法、比较法,由于分压电路简单,动态调节范围广,因此获得了广泛应用。如图3.3为传感器基本测量电路,其所用的信号为分压电路。输入部分共包含两个输入电压,其中VH加热电压用于敏感因子处于对象气体相适应的特定温度而施加在集成的加热器上;VC用于测定传感器串联负载RL的两端电压;传感器电阻Rs与负载电阻RL串联;RH为加热器电阻,通过采样输出采样电压Vout。根据计算得到的传感器电

26、阻值Rs,可以计算得出有关检测气体的浓度数值。图 传感器基本测量电路 (3.1)根据式3.1所示,可以看到,气体传感器的电阻阻值的大小与检测气体浓度。 (3.2)式3.2中,常量用A表示,测量气体传感器电阻为,所测气体的浓度为C,其中为传感器的输出电阻曲线的指数变数指数,其数值表示所测气体浓度变化的敏感程度,其中与测量气体的类型、测量环境的温湿度、传感器器件等因素决定。雾霾的监测采用设备韩国SYHITECH的专利产品DSM501,上述产品采用的计数原理为粒子计数,从而完成空气中的颗粒物计数,此外在内部还设置加热器可自动吸入空气。输出采用的PWM脉宽调制,通过设置的可调电阻可以检测灰尘的大小,因

27、此能够准确的测量出PM2.5的含量,输入电路为5V,便于信号处理,如图3.4为DSM501原理图。图3.4 DSM501原理图DSM501的3,5 脚分别为Vcc(+5V)、GND,输出脚Vout2为普通输出脚,有图3.4可以看出,DSM501 、只有五个引脚,引脚数非常少,故与MSP340F149单片机的连接的电路就非常简单,DSM501的3引脚为电源引脚,接+5V 电压,5引脚为接地引脚,根据要检测空气中颗粒物直径的不同要以,来选用Vout1或 Vout2输出,连接在MSP340F149的CPP1模块的RC2引脚,利用定时器 TMR1 当下降沿来临时多输出 PMW 波形低脉冲时间进行计数。

28、3.3 时钟系统设计时钟电路设计部分采用的芯片为DS1302型号,根据系统运行要求,可选择绝对时钟和相对时钟两种计算设计方法。 3.3.1、DS1302芯片概述DS1302是由DALLAS公司推出的芯片,其主要特点为能够涓流充电,内部富含一个实时时钟/日历和31字节静态RAM,进行数据传输十分方便,通过简单的串行接口即可完成与单片机89C52数据的交换和通信。各个管脚的功能:RST表示复位脚功能;I/O表示数据输入/输出引脚功能;SCLK表示串行时钟功能;X1,X2表示功能;Vcc1表示电池供电管脚1功能;Vcc2表示电源供电管脚2功能;GND表示接地功能。图 1302时钟电路图3.4 扩展外

29、部存储器考虑到采用无线通信网络的不稳定性,在数据传输过程中容易发生丢包活堵塞等情况,因此次数采集获取的数据无法顺利的传输到监测中心。此时需要将采集的数据先保存一段时间,待通信线路恢复正常状态下,根据系统设计要求,选用I2C总线E2PPROM。本文采用的AT24C64正是这种类型的串行的芯片,具有较低的功耗,工作和静态电流均较小,因此便于携带,其封装图如3.5所示。NCNC图3.6 AT24C64 的引脚图3.5 GPRS模块的设计下面详细分析通信模块电力的设计过程,本文采用的无线传输数据模块包含GPRS模块以及与单片机接口电路、SIM卡接口电路以及GPRS工作状态指示电力等模块,首先由传感器采

30、集的各个数据输入到单片机接口中,经过简单的处理操作后按照串行接口电路发送SIM300C中,其中设置SIM300C主要完成的是对获取数据的检验以及完成命令进行TCP/IP打包封装,由于GPRS采用的为无线发射方式,因此可以通过无线网络即可将采集并处理好的数据发送到监测中心,其中SIM300C具有三波段的GSM或者GPRS可选用模块,在全球范围内都能够良好、稳定的工作,此外上述模块还能够为GPRS提供多信道类型的能力,具有多种编码方案,分别为CS-1,CS-2,CS-3和CS-4的四种。此外在模块内部还集成了TCP/IP协议栈,根据要求可完成各项拓展功能,因此采用上述模块非常简单、快捷、方便。本文

31、采用的单片机与SIM300C GPRS模块通过RS232串口的方式连接到一起,由于电平存在差异,因此应用时需要完成电平转换功能,本文采用的转换芯片为MAX3221,如图3.5所示的电路图,可以清晰的而看到,GPRS模块通过中间转换的方式完成了与单片机之间数据的通信,图3.6为SIM300C 的电路连接图。图 RS232 串口电平转换电路图 SIM300C 的电路连接图图3.7所示,发光二极管D-STATE与SIM300C的网络状态指示引脚相连接,能够实时显示出GPRS模块的工作状态,其中SIM300C的PWRKEY引脚与单片机MSP430F149的I/O端口P4.7相连,由MSP430F149

32、来控制其启动和关闭。3.6 电源模块设计(1)芯片介绍当前应用到电力电子元器件中的重要大暖主要有三端稳压集成电路。该型号的元器件包含两种型号输出,1、正向电压,2、负向电压。其中涉及的三端IC主要指的是稳压集成电路的三条引脚输出,包含接地端、输入端及输出端三个组成单元。当前广泛应用的主要为78/79系列三端稳压IC构成的稳压电源电路部分,该电路结构简单,构成元器件较少,其内部设置了诸多保护电路环节,其中78/79数字分别代表的是三端集成稳压电路的输出电压的数值,取值06代表的为输出正6V的电压,09代表输出为正9V的输出电压,实际应用中,为了能够保证元器件的稳定运行,通常在三端集成稳压电路装设

33、足够大的散热器,当温度过高时,将对稳压性能产生严重影响。(2)电路原理图本文设计的电源部分采用的是78系列电源电路芯片,可以分别产生+5V、+15V两路电源,下面通过图2.7所示进行分析介绍,IC芯片采用的是集成稳压器部分型号分别为7805和7815,滤波电容的输入输出端口分别用C2、C3、C5、C6表示,在D1口出分别串接稳压二级管,地点将设置在7805稳压器2脚与地之间的位置,主要完成功能是保障输出电压U能够得到明显提升,其中U表示的是7805稳压器与稳压二极管D1数值的和。保护二级管电路采用的为D2保护电路,当输出小于D1稳压值时,将促进D2发生导通,因此电流将通过旁路支路流出。 图3.

34、11 78系列的电源电路 图 系统总体供电电路 4.软件的总体分析根据硬件系统设计要求,因此还需设置软件系统,并结合模块化设计的思想及要求,从而设计了系统软件的总体框架图,包含数据采集、硬件系统初始化。图4.1 总体框架图4.1 数据采集与处理程序设计设置检测的终端主要完成的是空气质量远程监测系统,需要将现场擦剂的数据发送到监测中心,采集到的空气质量相关数据的获取主要是通过设置的各个传感器有效的捕捉空气中存在的敏感因子。从而使得传感器发生一定的变化,然后将获得的采集数据通过GPRS模块将其打包成IP数据包,通过无线传输的方式从而实现与上位机的连接,最后完成整个数据的传输,在监测终端还要设置能够

35、接收终端监测中心的各个相关控制指令,从而有效更新数据发生的变化。其中空气质量远程监测系统主要的工作流程有:先进行数据初始化、数据的采集工作、输出的传输,等待下一次采集任务,其流程图如4.2所示。图 检测终端软件设计流程图4.2 硬件系统的初始化每次进项相关操作前,都需要对硬件系统进行初始化操作,由于采用的单片机型号为MSP430F149,设计的端口大多为复用端口,因此在设计是要严格区分,此外在进行无线传输工程中,还需要采用USARAT串行端口连接GPRS模块传输数,然后对所采用的气体传感器模块数据进行采集的I/O端口进行设置,本文可以采用单片机自身所带的数模转换模块,对相关的参考电压数值、采样

36、频率数值以及端口转换方式等数值进行设定,此外还要对脉冲端口进行设置以及对存储器进行初始化,当采用GPRS模块上电后,能够自动检测SIM卡自动连接当前的无线通信网络。检测终端初始化部分程序如下所示:void InitSys()unsigned int iq0;BCSCTL1 &= XT2OFF;do IFG1 &= OFIFG;for (iq0=0 xFF; iq00; iq0-);while (IFG1 & OFIFG) != 0);BCSCTL2=SELM_2; /选择 MCLK 为 XT2UartInit(); /初始化 USART0LED_DIR |= LED_IO;TimerBInit

37、(); /定时器 B 初始化SetTime(TimeZhi); /设置定时时间GotimeDfB(100); /打开定时器InitBhTimerA(); /初始化定时器 AGoBhTimerA(100); /打开捕获功能InitIIC(); /初始化 IIC 总线端口Adc12Init(); /初始化 AD 转换模块EINT();4.3 数据采集采集与处理 在采集的数据信息中,包含PM2.5的含量,二氧化硫、二氧化碳以及其他颗粒物的含量,本文采用的传感器型号为DSM501,该传感器测量的周期时间设定为数据采集的中断程序流程图和气体浓度ADC转换流程图。图 数据采集的中断程序流程图4.4 气体浓

38、度ADC转换流程图5.总结 近些年来,我国环境持续恶化,各地均不断陷入雾霾严重污染的环境,为了提高空气质量远程监测系统,因此本文采用基于GPRS技术的环境温湿度、二氧化碳、二氧化硫等参数的实时监测系统,本文主要进行了如下研究。首先详细分析了课题的研究背景及意义,详细分了国内外研究现状,针对空气质量监测系统进行了整体方案的设计,详细分析了监测系统的工作原理及无线传输方案选择及传输原理,其次对控制质量远程监测系统的硬件及软件方案进行了设计,包含:传感器的选择、时钟系统设计、扩展外部存储器、GPRS无线传输模块以及电源模块等,软件进行了系统初始化及数据采集和处理的流程设计。 通过本文进行的空气质量远

39、程监测系统设计,能够良好的解决空气质量监测系统开发周期长,难度大等问题,便于居民实时获取环境各项参数数据。致谢毕业论文暂告收尾,这也意味着我的大学生活既将结束。回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的熏陶下度过,实是荣幸之极。在这四年的时间里,我在学习上和思想上都受益非浅。这除了自身努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的。老师的谆谆诱导、同学的相互讨论及家长的支持鼓励,是我坚持完成论文的强大动力。在此,我要特别感谢我的导师老师。从论文的选题、文献的采集、框架的设计、结构的布局到最终的论文定稿,从内容到格式,从标题到标点,他都费尽

40、心血。没有老师的辛勤栽培、孜孜教诲,就没有我论文的顺利完成。感谢各位同学,与他们的交流使我受益颇多。感谢大家对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心。时间的仓促及自身专业水平的不足,整篇论文肯定存在尚未发现的缺点和错误。恳请阅读此篇论文的老师、同学,多予指正,不胜感激!参考文献2文志成.GPRS 网络技术M.北京:电子工业出版社,20053仓彬彬.基于 LabVIEW 的气象监测系统D.南京信息工程大学,20114侯国平,王坤,叶齐鑫. LabVIEW7.1 编程与虚拟仪器设计M.北京:清华大学出版社,5王磊,陶梅

41、.精通 LabVIEW8.0M.北京:电子工业出版社,20076杨乐平,李海涛,杨磊. LabVIEW 程序设计及应用(第 2 版)M.北京:电子工业出版社,20057郁波.自动气象站数据传输系统设计D.南京信息工程大学,20088孙泽文.基于 LabVIEW 软件的数据采集与分析系统设计J.电工电气,2010.No. l9师宝山,张贵州.气体传感器在多参数气体检测仪中的应用J.仪表技术与传感器,2007, 6:23-2510张艳丽,杨仁弟.数字温湿度传感器 SHT11 及其应用J.工矿自动化,2007,(3):113-11411师宝山.基于 AT89S51 的多参数气体检测仪的研制J.微计算

42、机信,2007,23,(7-1)附录一 检测主程序程序#include /调用外函数/#include #include #include #include #include #include /*初始化CPU*/void init_cpu() /初始化cPu EA=1;TR0=1;TR1=1;TMOD=0 x11;TH1=0 x3c;TL1=0 xb0;/*void time1(void) interrupt 3 using 1 TH1=(65536-50000)/256;TL1=(65536-50000)%256; keyval=P1; * /初始化CPU结束/void main_menu

43、_initial() /LCD主菜单初始化./main1_menu0.menu_count=4; /有4个菜单项./main1_menu0.display=measurearray; /定义一个”开始测量“数组/main1_menu0.subs=NULL; main1_menu0.children_menus=measure_menu;/当前菜单子菜单的指针main1_menu0.parent_menus=NULL; /还有“数据存储”、“时间设置”/void measure_menu_initial() /“开始测量”菜单设置/ measure_menu0.menu_count=2; mea

44、sure_menu0.display=qr; /开始测量函数, 确认. measure_menu0.subs=start_measure_function; /开始测量函数 measure_menu0.children_menus=NULL; measure_menu0.parent_menus=main1_menu; measure_menu1.menu_count=2; measure_menu1.display=qx; /开始测量函数, 取消. measure_menu1.subs=NULL; measure_menu1.children_menus=NULL; measure_menu

45、1.parent_menus=main1_menu; /还有void store_menu_initial()、void time_menu_initial()/void led_menu_pro() max_item=menu_led-menu_count;switch(keyval)case 0: break;case 1: /向上键.if(user_choosen=0)user_choosen=max_item;shuaxin=1;user_choosen-;break; /“向上”“向下”“确认”“取消”键/if(shuaxin)/是否需要刷新LCD标志位. Clr_Scr(); sh

46、uaxin=0;led_menu_show();v oid led_menu_show()uchar n;max_item=menu_led-menu_count;if (max_item=4) /菜单项为3则表示为主菜单.for(n=0;n4;n+) draw_bmp(n*2,20,96,0,menu_ledn.display);select_item(user_choosen); /标记出当前菜单项.elseswitch(temp_choosen) case 0:draw_bmp(0,20,96,0,measurearray); /“开始测量”数组/break; default:break

47、;for(n=0;nmax_item;n+)draw_bmp(n+1)*2,20,32,0,menu_ledn.display);select_item(user_choosen+1); void select_item(uchar n)draw_bmp(n*2,2,16,0,curflag); void start_measure_function(void) /开始测量函数/main_Menu();/*-主函数-*/main() init_cpu(); Init_Clock(); init_lcd(); Disp_Img(FirstPage);delay(2000); /延时/ClockM

48、sg(); Refresh(); delay(2500); Clr_Scr(); main_Menu(); Clr_Scr(); main_menu_initial(); measure_menu_initial(); store_menu_initial(); time_menu_initial(); communication_menu_initial(); while(1) keyval=get_key(); /读键.led_menu_pro(); / 适当延时防止因为不断查忙而耗费大量CUP资源 /主机程序sbit RS=P20; /写信号sbit RWW=P21; /写信号sbit

49、E=P22; /使能信号#define e1 E=1 #define rs1 RS=1 #define e0 E=0 #define rs0 RS=0 #define PP P0 / 延时函数msvoid _delay_ms(uint t) uint i,j; for(i=0;it;i+) for(j=0;j0)t-;/写1602控制字void lcd1602_writecrtl(uchar dat) rs0;/写信号置0 _delay_us(5); PP=dat; e1;/使能信号置1 _delay_us(5); e0;/使能信号置0/写1602数据void lcd1602_writenum

50、ber(uchar dat) rs1;/写信号置1 _delay_us(5); PP=dat; e1;/使能信号置1 _delay_us(5); e0;/使能信号置0/1602初始化void lcd1602_init() RWW=0; lcd1602_writecrtl(0 x38); /显示模式 lcd1602_writecrtl(0 x06); /显示光标移动位置 lcd1602_writecrtl(0 x0c); /显示开及光标设置 lcd1602_writecrtl(0 x01); /显示清屏/显示地址void lcd1602_adr(uchar dat) lcd1602_writec

51、rtl(0 x80 | dat);/行显示-void LCD1602_string(uchar hang,uchar lie,uchar const *p)uchar a;if(hang = 1) a = 0 x00;if(hang = 2) a = 0 x40;a = a + lie - 1;lcd1602_adr(a);while(1)if(*p = 0) break;lcd1602_writenumber(*p);p+; 从机程序sbit CS= P12;sbit Clk= P10;sbit DATI=P11;sbit DATO= P11;uint dat = 0 x00; /AD值/AD转换子程序uint adc0832A(unsigned char CH) uchar i,test,adval; adval = 0 x00; test = 0 x00; /初始化 Clk = 0; DATI = 1; _nop_(); _nop_(); CS = 0; _nop_(); Clk

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论