版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程二阶变系数齐次线性微分方程 second order homogeneous linear differential equation with variable coefficient 特征方程特征方程 characteristic equation 常系数 机动 目录 上页 下页 返回 结束 第七节齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 求
2、特征方程(代数方程)之根转化 第七章 一、定义)(1)1(1)(xfyPyPyPynnnn n阶常系数线性微分方程的标准形式阶常系数线性微分方程的标准形式0 qyypy二阶常系数齐次线性方程的标准形式二阶常系数齐次线性方程的标准形式)(xfqyypy 二阶常系数非齐次线性方程的标准形式二阶常系数非齐次线性方程的标准形式二、二阶常系数齐次线性方程解法-特征方程法特征方程法,rxey 设设将其代入上方程将其代入上方程, 得得0)(2 rxeqprr, 0 rxe故有故有02 qprr特征方程特征方程,2422,1qppr 特征根特征根0 qyypy 有两个不相等的实根有两个不相等的实根,2421q
3、ppr ,2422qppr ,11xrey ,22xrey 两个线性无关的特解两个线性无关的特解得齐次方程的通解为得齐次方程的通解为;2121xrxreCeCy )0( 特征根为特征根为 有两个相等的实根有两个相等的实根,11xrey ,221prr )0( 一特解为一特解为得齐次方程的通解为得齐次方程的通解为;)(121xrexCCy 代入原方程并化简,代入原方程并化简,将将222yyy , 0)()2(1211 uqprrupru, 0 u知知,)(xxu 取取,12xrxey 则则,)(12xrexuy 设设另另一一特特解解为为特征根为特征根为 有一对共轭复根有一对共轭复根,1 jr ,
4、2 jr ,)(1xjey ,)(2xjey )0( 重新组合重新组合)(21211yyy ,cos xex )(21212yyjy ,sin xex 得齐次方程的通解为得齐次方程的通解为).sincos(21xCxCeyx 特征根为特征根为定义定义 由常系数齐次线性方程的特征方程的根由常系数齐次线性方程的特征方程的根确定其通解的方法称为确定其通解的方法称为特征方程法特征方程法. .044的通解的通解求方程求方程 yyy解解特征方程为特征方程为,0442 rr解得解得,221 rr故所求通解为故所求通解为.)(221xexCCy 例例1 1.052的通解的通解求方程求方程 yyy解解特征方程为
5、特征方程为,0522 rr解得解得,2121jr ,故所求通解为故所求通解为).2sin2cos(21xCxCeyx 例例2 2三、n阶常系数齐次线性方程解法01)1(1)( yPyPyPynnnn特征方程为特征方程为0111 nnnnPrPrPr特征方程的根特征方程的根通解中的对应项通解中的对应项rk重重根根若若是是rxkkexCxCC)(1110 jk复复根根重重共共轭轭若若是是xkkkkexxDxDDxxCxCC sin)(cos)(11101110注意注意n次代数方程有次代数方程有n个根个根, 而特征方程的每一个而特征方程的每一个根都对应着通解中的一项根都对应着通解中的一项, 且每一项
6、各一个且每一项各一个任意常数任意常数.nnyCyCyCy 2211特征根为特征根为, 154321jrrjrrr 故所求通解为故所求通解为.sin)(cos)(54321xxCCxxCCeCyx 解解, 01222345 rrrrr特征方程为特征方程为, 0)1)(1(22 rr.022)3()4()5(的通解的通解求方程求方程 yyyyyy例例3 3四、小结二阶常系数齐次微分方程求通解的一般步骤二阶常系数齐次微分方程求通解的一般步骤:(1)写出相应的特征方程)写出相应的特征方程;(2)求出特征根)求出特征根;(3)根据特征根的不同情况)根据特征根的不同情况,得到相应的通解得到相应的通解. (见下表见下表)02 qprr0 qyypy 特征根的情况特征根的情况 通解的表达式通解的表达式实根实根21rr 实根实根21rr 复根复根 ir 2, 1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCeyx 作业作业 P340 1 ; 2; 思考题思考题求微分方程求微分方程 的通解的通解. yyyyyln
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年太阳能电池及组件项目规划申请报告模范
- 2025年旅游景区管理服务项目申请报告模范
- 2024-2025学年铜山县数学三上期末质量检测试题含解析
- 2025年氯金酸项目申请报告模范
- 财务类实习报告模板合集5篇
- 2025年汽车隔音材料项目申请报告模板
- 毕业财务实习报告4篇
- 餐厅服务员的辞职报告15篇
- 我与青少年科技活动600字获奖征文10篇范文
- 个人寒假实习报告
- 陕西省咸阳市2023-2024学年高一上学期期末考试 物理 含解析
- 程序员个人年终总结
- (正式版)HG∕T 21633-2024 玻璃钢管和管件选用规定
- 蔚来用户运营分析报告-数字化
- 南京市2023-2024高一上学期期末英语试卷及答案
- 《供应链管理》期末考试复习题库(含答案)
- 雍琦版法律逻辑学课后习题答案全
- 学校暑期维修方案
- 国家自然科学基金进展报告
- 小车多方式运行的PLC控制——PLC控制系统课程设计
- (完整版)机加中心绩效考核方案
评论
0/150
提交评论