建筑环境学chapter4.1-2thermalcomfortable(13)分析解析_第1页
建筑环境学chapter4.1-2thermalcomfortable(13)分析解析_第2页
建筑环境学chapter4.1-2thermalcomfortable(13)分析解析_第3页
建筑环境学chapter4.1-2thermalcomfortable(13)分析解析_第4页
建筑环境学chapter4.1-2thermalcomfortable(13)分析解析_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、4.3 Heat losses 失热量失热量4.3.1 Factors affecting heat loss影响建筑失热量的因素影响建筑失热量的因素Figure 3.1 Heat losses from a building 结构失热量结构失热量通风失热量通风失热量Factors affecting heat losses影响建筑失热量的因素影响建筑失热量的因素1) insulation of shell 建筑外围护结构的保温建筑外围护结构的保温Good insulation decreases the heat losses好的保温减少建筑失热量好的保温减少建筑失热量Poorly-insu

2、lated increase the heat losses 保温不好增加建筑的失热量保温不好增加建筑的失热量2 ) area of the shell 建筑外围护结构的面积建筑外围护结构的面积A terraced house排房排房 and a detached house独立式住宅独立式住宅Which one loses less heat ?Table 4.73)temperature difference between inside and outside 建筑内外的温差建筑内外的温差lLarge temperature difference increases the heat l

3、osses by conduction and ventilation.lMainly depend on the design temperature for the inside air.lRecommended comfort temperature for different types of buildings are given in table 4.54) Air change rate 换气次数换气次数lWarm air leaving a building carries heat and is replaced by cold airlTable 4.5 gives typ

4、ical rates of air infiltration 5) Exposure to climate 建筑的暴露情况建筑的暴露情况 External surface resistance 外表面热阻外表面热阻Three types of exposure lSheltered: 受遮挡受遮挡 Buildings up to 3 storeys in city centres.lNormal: 正常正常 Most suburban and country buildingslSevere:严重严重 Buildings on exposed hills or coastal sites. 山

5、坡或海边的建筑 Floors above the fifth in suburban or country sites. 市郊或农村的5层以上建筑 Floors above the ninth in city centres. 市中心九层以上建筑6)efficiency of services 设备的效率设备的效率lFlue is positioned inside the building Flue is positioned inside the building lFlue is positioned on an external wall7) Patterns of use 建筑使用模

6、式建筑使用模式lThe number of hours per day and the days per year that a building is used have a large effect on the energy consumption of a buildings lEach parts needs to be considered as a separated building for the heating calculations.4.3.2 Calculation of heat loss失热量计算失热量计算 结构失热量 walls, windows, roofs

7、and floors. steady state conditions,稳态条件稳态条件 tUAfP稳态计算法:不考虑建筑物以前时刻传热过程的影响,只稳态计算法:不考虑建筑物以前时刻传热过程的影响,只采用室内外瞬时或平均温差与围护结构的传热系数、传热采用室内外瞬时或平均温差与围护结构的传热系数、传热面积的积来求负荷面积的积来求负荷Applied in the following cases: l蓄热性能小的轻型、简易围护结构的传热过程,可用逐时蓄热性能小的轻型、简易围护结构的传热过程,可用逐时室内外温差乘以传热系数和传热面积近似计算室内外温差乘以传热系数和传热面积近似计算l室内外温差的平均值远

8、远大于室内外温度的波动值时,采室内外温差的平均值远远大于室内外温度的波动值时,采用平均温差的稳态计算带来的误差也比较小,在工程设计用平均温差的稳态计算带来的误差也比较小,在工程设计中是可以接受的。中是可以接受的。tUAfP3600t NVCVVPP73Pv=rate of ventilation heat loss (W) Cv=volumetric specific heat capacity of air ( 1300J/m3K) N= air infiltration rate for the room ( air changes per hour) V = volume of the

9、room (m3) t= air temperature difference between the inside and outsidelit is necessary to take account of solar radiation as well as air temperature. l Sol-air temperature(室外空气综合温度)(室外空气综合温度)1 1 围护结构外表面的热平衡图围护结构外表面的热平衡图 1 1)对流换热量)对流换热量2 2)太阳辐射)太阳辐射 太阳直射辐射太阳直射辐射 天空散射辐射天空散射辐射 地面反射辐射地面反射辐射3 3)长波辐射换热量)长

10、波辐射换热量与大气之间的长波辐射与大气之间的长波辐射与环境表面之间的长波辐射与环境表面之间的长波辐射与地面的长波辐射与地面的长波辐射式中式中 建筑物外表面单位面积上得到的热量,建筑物外表面单位面积上得到的热量,W/m2W/m2 围护结构外表面的对流换热系数,围护结构外表面的对流换热系数,W/ m2W/ m2 室外空气温度,室外空气温度, 围护结构外表面温度,围护结构外表面温度, 围护结构外表面对太阳辐射的吸收率围护结构外表面对太阳辐射的吸收率 太阳辐射照度,太阳辐射照度,W/ m2W/ m2 围护结构外表面与环境表面的长波辐射换热量,围护结构外表面与环境表面的长波辐射换热量,W/ m2W/ m

11、2)()()(wzoutwoutlwoutairoutlwwairouttttQaItQaIttqqoutairtwtaIlwQ2 2 建筑物外表面单位建筑物外表面单位面积上得到的热量:面积上得到的热量:)()()(wzoutwoutlwoutairoutlwwairouttttQaItQaIttq白天:白天:太阳辐射强度长波辐射,可忽略长波辐射作用太阳辐射强度长波辐射,可忽略长波辐射作用夜间:夜间:没有太阳辐射的作用,天空的背景温度没有太阳辐射的作用,天空的背景温度 空气温度,不空气温度,不 可忽略建筑物向天空的长波辐射可忽略建筑物向天空的长波辐射 特别是冬季夜里忽略天空辐射可能导致对热负荷

12、的估计特别是冬季夜里忽略天空辐射可能导致对热负荷的估计 过低过低 QlwQlw 也被称为夜间辐射或有效辐射也被称为夜间辐射或有效辐射人环奖试题:人环奖试题:室外空气温度升降的原因是(室外空气温度升降的原因是( )A、空气在白天接受太阳辐射而升温,夜间向天空进行长波辐射而降温B、空气因与地面传热而白天升温、夜间减温C、空气在白天接受太阳辐射而升温,夜间则由于海陆风导致降温D、由于日、夜风的流向不同而导致空气温度变化 Worked example 4.1 A window measuring 2 m by 1.25 m has an average U-value, including the f

13、rame, of 6.2 W/m2K. Calculate the rate of fabric heat loss through this window when the inside comfort temperature is 20 and the out side air temperature is 4 . know U= 6.2 W/m2K A=2X1.25=2.5m2t=20-4=16 using So fabric loss=248W248165 . 22 . 6PftUAWorked example 4.2 A simple building is 4 m long by

14、3 m wide by 2.5 m high. In the walls there are two windows, each 1 m by 0.6 m, and there is one large door 1.75 m by o.8 m. The construction has the following U-values in W/m2K: windows 5.6, door 2.0, roof 3.0, floor 1.5. The inside environmental or comfort temperature is maintained at 18 while the

15、outside air temperature is 6 . The volumetric specific heat capacity of the air is taken to be 1300J/m3 . There are 1.5 air change per hour. Calculate the total rate of heat loss for the building under the above conditions.Step1: sketch the building with its dimensions, as in figure 3.2. calculate t

16、he areas and the temperature difference.Step 2: tabulate the information and calculate the rate of fabric heat losses usingStep3: calculate the ventilation heat loss.CV= 1300J/m3 , N=1.5/h V=4X3X2.5=30m3, t=18-6=12 using tUAfP195360012305 . 113003600t NVCVVPSo rate of ventilation heat loss = 195WSte

17、p4: total rate of heat loss = fabric heat loss + ventilation heat loss= 1734.24+195=1929.24Wl围护结构的稳态传热是指( )总传热量不变热流强度不变总热阻不变平均传热系数不变4.3.3 Non-steady condition 非稳定条件非稳定条件lFor situations where the steady state assumption is invalid it is necessary to consider the effects of daily variations in the out

18、side temperature Variations in solar radiation Changes in the internal heat input : W/m2KFor very thin units, such as glass, the admittance becomes the same as the U-value.传热系数和蓄热系数是相反的概念。传热系数表示热传导的能传热系数和蓄热系数是相反的概念。传热系数表示热传导的能力,蓄热系数表示储存热量的能力。力,蓄热系数表示储存热量的能力。 Complement(补充):(补充):l对于一个有一定厚度的均质材料来说,如果一

19、侧对于一个有一定厚度的均质材料来说,如果一侧的空气温度作周期性波动,那么材料层表面的温的空气温度作周期性波动,那么材料层表面的温度和热流也都要随着作同样周期的波动,此时用度和热流也都要随着作同样周期的波动,此时用表面上的热流波幅与表面温度波幅之比表示材料表面上的热流波幅与表面温度波幅之比表示材料蓄热能力的大小,称为材料的蓄热系数。蓄热能力的大小,称为材料的蓄热系数。l蓄热系数大,材料的热稳定性好,材料表面的温蓄热系数大,材料的热稳定性好,材料表面的温度波幅就小度波幅就小l反之,。反之,。l它是建筑围护结构热稳定性设计不可缺少的一个它是建筑围护结构热稳定性设计不可缺少的一个重要参数重要参数Fig

20、ure 4.3 Thermal responseMcMullanHeavyweight structures have smaller temperature swings than lightweight structures.damping, 衰减About thermal response , Lightweight structure has( ) A short lagB long lagC high swing D low swing E less dampingF loss damping 人环奖试题:人环奖试题:地下室的温度是( )A、春天最低B、冬天最低C、冬天比夏天低D、夏

21、天最高It is too difficult to solve空气调节Important terms:lThermal conductivity 导热系数lThermal resistivity 比热阻lThermal resistance 热阻lThermal transmittance 传热系数lThermal admittance 蓄热系数4.4 Heat gains 建筑得热量建筑得热量Figure 4.4 Typical heat gains in a buildingMcMullantypical heat gains in a building 太阳辐射得热量太阳辐射得热量室内人

22、员和设备形成的一般得热量室内人员和设备形成的一般得热量太阳辐射得热量太阳辐射得热量Depends on many factorsTable 4.9 seasonal solar gain through windows to Prevent excessive heat gain and glare(眩光) caused by direct sunshine.External controls (外遮阳)Internal controls (内遮阳)Special glasses (特殊玻璃)Complement: shading coefficient of external control

23、s外遮阳系数:外遮阳系数:l遮阳对减少太阳辐射作用非常显著遮阳对减少太阳辐射作用非常显著l通常用外遮阳系数作为衡量遮阳效果的指标通常用外遮阳系数作为衡量遮阳效果的指标l外遮阳系数:外遮阳系数:在在直射阳光直射阳光照射的时间内,透进有照射的时间内,透进有外遮阳窗口的太阳辐射量与透进没有外遮阳窗口外遮阳窗口的太阳辐射量与透进没有外遮阳窗口的太阳辐射量之比的太阳辐射量之比l系数愈小,通过窗户进入室内的太阳辐射量愈小,系数愈小,通过窗户进入室内的太阳辐射量愈小,防热效果愈好防热效果愈好遮阳的基本形式遮阳的基本形式西南朝向的外窗当需设置遮阳板时最好采用(西南朝向的外窗当需设置遮阳板时最好采用( )A A

24、 水平式水平式B B 垂直式垂直式C C 挡板式挡板式D D 综合式综合式朝西的外窗当需设置遮阳板时宜采用(朝西的外窗当需设置遮阳板时宜采用( )A A 水平式水平式B B 垂直式垂直式C C 挡板式挡板式D D 综合式综合式公共建筑可调节的金属材质遮阳装置公共建筑可调节的金属材质遮阳装置 External controlsSpecial glasses (特殊玻璃)(特殊玻璃)人环奖试题:人环奖试题:Low-eLow-e玻璃能够改善夏季室内热环境的原因是玻璃能够改善夏季室内热环境的原因是( )A A、对长波辐射的低发射率和高反射率、对长波辐射的低发射率和高反射率B B、对近红外线的低透过率、

25、对近红外线的低透过率C C、对可见光的高透过率、对可见光的高透过率D D、有较低的综合传热系数、有较低的综合传热系数一般来说,燃料燃烧、电一般来说,燃料燃烧、电热器具热源等放出的红外热器具热源等放出的红外线多属于近红外线,由于线多属于近红外线,由于波长较短,因此产生大量波长较短,因此产生大量的热效应,长期照射人体的热效应,长期照射人体后会产生灼伤皮肤及眼睛后会产生灼伤皮肤及眼睛水晶体等伤害水晶体等伤害人环奖试题:人环奖试题:Low-eLow-e玻璃能够改善夏季室内热环境的原因是玻璃能够改善夏季室内热环境的原因是( )A A、对长波辐射的低发射率和高反射率、对长波辐射的低发射率和高反射率B B、

26、对近红外线的低透过率、对近红外线的低透过率C C、对可见光的高透过率、对可见光的高透过率D D、有较低的综合传热系数、有较低的综合传热系数室内人员和设备形成的一般得热量室内人员和设备形成的一般得热量Heat from people Heat from lighting Heat from cooking and water heatingHeat from machinery, refrigerators , electrical appliances 4.5 Heat balanceFabric Heat Losses ventilationHeat Losses solarHeat gai

27、ns casualHeat gainsEnergy for heating or cooling +=+This is a general expression of balance which is true for summer and winter conditions.PtE?Seasonal energy requirements季节性能耗季节性能耗lTemperature : average temperature calculating total energy consumption and can be used to predict the quantity of fuel

28、 required in a season and how much it will cost. the size of the heating or cooling plant required; lsuch a prediction needs consideration of the coldest and hottest days.Worked example 4.3 Over a heating season of 33 weeks the average rate of heat loss from a certain () is 2500W for the fabric loss

29、 and 1300W for the ventilation loss. The windows have areas: 6m2 south-facing, 5m2 east-facing, 6m2 north-facing.The house is occupied by three people and cooking is by gas.Use the values for seasonal heat gains given in table 3.7 and 3.9 and calculate :(a) The seasonal heat losses(b) The seasonal h

30、eat gains; and (c) The seasonal heat requirements.(a) total rate of heat loss= fabric loss+ ventilation loss = 2500W+1300W=3800W heat energy lost= rate of heat loss time taken =3800W (337 24 60 60)s = 75.842GJ(giga joules) so seasonal heat loss = 75.842GJ =75842MJ(mega joules) (b) Heat gains south (

31、680MJ/m26) 4080 east (410MJ/m25) 2050 north (250MJ/m26) 1500 body heat ( 1000MJ3) 3000 cooking (gas) 6500 water heating 2000 electrical 3000 So seasonal heat gain=22130MJ(c) Seasonal heat requirement = =75842-22130 =53712MJ =53.712GJ Efficiency 效率效率Efficiency is a measure of the effectiveness of a s

32、ystem which converts energy from one form to anotherlDomestic heating efficiency table 4.12 )energy deliveredenergy useful100%efficiencyWorked example 4.4 The seasonal heat requirement of a house is 54GJ, which is to be supplied by a heating system with an overall house efficiency of 67%. The solid

33、fuel used has a calorific value of 31MJ/kg. calculate the mass of fuel required for one heating season.Efficiency = 67/100, output= 54MJ, input energy=?Using energy deliveredenergy useful100%efficiencyenergyinput 5410067Input energy = 80597MJMass of fuel needed=2600kg31MJ/kg80597MJ valuecalorific re

34、quiredenergy 4.6 Energy regulations 能源规范能源规范Why do we need energy regulations?Can help to minimise energy use in buildingsRegulation about thermal insulation control heat loss from buildingsMinimise the heat load for heating in winter Minmise the cold load for air conditioning in summer there are ma

35、ny regulations4.6.1 Building regulations 建筑规范建筑规范 How to realize energy efficiency in buildings by regulations?(1) Heat loss by transmission through the fabric(2) Heat loss by air leakage around openings and through the fabric(3) Control system for space heating and hot water(4) Heat loss from vesse

36、ls 容器 and pipes used for water(5) Heat loss from hot water pipes and hot air ducts used for space heating(6) energy-efficient lighting sources and switching for the lighting4.6 Energy regulations 能源规范能源规范4.6.1 Building regulations 建筑规范建筑规范4.6.2 Energy rating, SAP 建筑能耗评级建筑能耗评级4.6.3 Carbon Index,CI 碳指数碳指数4.6.4 Insulation of the building fabric 围护结构保温围护结构保温4.6.5 Other measurements for energy conservation 其他节

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论