版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.3 3.1.3 空间向量的数量积运算空间向量的数量积运算S FW= |F| |s| cos 根据功的计算根据功的计算, ,我们定义了平面两向量的数量我们定义了平面两向量的数量积运算积运算. .一旦定义出来一旦定义出来, ,我们我们长度和角度长度和角度问题问题. .回回 顾顾O OA AB Ba a b b 类似地,可以定义空间向量的数量积类似地,可以定义空间向量的数量积两个向量的夹角是惟一确定的!两个向量的夹角是惟一确定的!新新 知知2 2)两个向量的数量积)两个向量的数量积注注: :两个向量的数量积是数量,而不是向量两个向量的数量积是数量,而不是向量; ; 规定规定: :零向量与任意
2、向量的数量积等于零零向量与任意向量的数量积等于零. .abA1 1B1 1BAabA1 1B1 1BA 数量积数量积 等于等于 的长度的长度 与与 在在 的方向上的投影的方向上的投影 的乘积的乘积. .a b a|ab|cosba3)3)空间两个向量的数量积性质空间两个向量的数量积性质注:注:性质性质 是证明两向量垂直的依据;是证明两向量垂直的依据;性质性质是求向量的长度(模)的依据是求向量的长度(模)的依据. .(4)(4)空间向量的数量积满足的运算律空间向量的数量积满足的运算律(1)()(). aba b . .12 EDABOabCcl12 EDABOabCcl222222)()()(
3、)3)()( )4)( )a bcab cpqp qpqpqpq 135 DCBDABCA解:解:ACABADAA 22222222|()|2()4352(0107.5)85.ACABADAAABADAAAB ADAB AAAD AA |85.AC ABCDA B C D 4AB 3 ,5 ,90 ,60ADAABADBAADAA AC 3. 另外另外, , ,证两直线垂直线常可转化为证明以这两条线段对应证两直线垂直线常可转化为证明以这两条线段对应的向量的数量积为零的向量的数量积为零. .证明:证明:如图如图, ,已知已知: :,POAOllOA射射影影且且求证:求证:lPA 在直线在直线l
4、l上取向量上取向量 , ,只要证只要证a 0a PA ()0.a PAaPOOAa POa OA ,aPAlPA 即即. .为为 P O A la 0,0,a POa OA P O A la 分析分析:同样可用向量同样可用向量,证明思路几乎一样证明思路几乎一样,只只不过其中的加法运算不过其中的加法运算用减法运算来分析用减法运算来分析.分析:要证明一条直线与一个平面分析:要证明一条直线与一个平面垂直垂直, ,由直线与平面垂直的定义可由直线与平面垂直的定义可知知, ,就是要证明这条直线与平面内就是要证明这条直线与平面内的的任意一条直线任意一条直线都垂直都垂直. .例例3(试用试用向量方法证明直线与
5、平面垂直的判定定理向量方法证明直线与平面垂直的判定定理) 已知直线已知直线m ,n是平面是平面 内的两条相交直线内的两条相交直线,如果如果 m, n,求证求证: . lll lmngm g m l 取已知平面内的任一条直线取已知平面内的任一条直线 g ,拿相关直线的方拿相关直线的方向向量来分析向向量来分析,看条件可以转化为向量的什么条件看条件可以转化为向量的什么条件?要要证的目标可以转化为向量的什么目标证的目标可以转化为向量的什么目标?怎样建立向量怎样建立向量的条件与向量的目标的联系的条件与向量的目标的联系? 共面向量定理共面向量定理, ,有了有了! !lmngn g m l ,gxmyn ,l gxl myl n 0,0 ,l ml m 0,.l glg 即即,lgll 即即 垂垂直直于于平平面面 内内任任一一直直线线.证证: 在在 内作不与内作不与m ,n重合的任一直线重合的任一直线g,在在 , ,l m n g 上取非零向量上取非零向量 因因m与与n相交相交,故向量故向量m ,n, ,l m n g 不平行不平行,由共面向量定理由共面向量定理,存在唯一实数存在唯一实数 ,使使 ( , )x y 通过学习通过学习, ,体会到我们可以利用向量数量积解体会到我们可以利用向量数量积解决立体几何中的以下问题:决立体几何中的以下问题: 1.1.证明两直线垂直证明两直线垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人借款合同文本
- 农村住房交易合同模板
- 2024年创新工作合同:灵活性与规范化并存
- 房地产行业负债管理制度探讨
- 快递运输承揽合同模板
- 奶制品订单合同模板
- 2024年兼职销售代表长期合同
- 手拟租房合同模板
- 培训教室改造合同模板
- 2024年合同草拟与执行条例
- 20世纪时尚流行文化智慧树知到期末考试答案章节答案2024年浙江理工大学
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- (高清版)JTGT 3331-04-2023 多年冻土地区公路设计与施工技术规范
- 增值服务具体方案怎么写范文
- 企业评标专家推荐表
- 设备故障报修维修记录单
- 苏州大学附属第一医院电子病历应用管理制度
- 超声造影全面总结
- 质量风险抵押金管理办法
- 奥氏气体分析仪技术操作规程
- 科技文献阅读方法PPT优秀课件
评论
0/150
提交评论