版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章机械效率典型例题第五章机械效率典型例题Q122345例例1 在图示的电动卷扬机中,已知其每一对齿轮的效率在图示的电动卷扬机中,已知其每一对齿轮的效率12、 2以及鼓轮的效率以及鼓轮的效率4均为均为0.95,滑轮的效率,滑轮的效率5为为0.96,载荷,载荷Q = 50000N。其上升的速度。其上升的速度V=12m/min , 求电机的功率?求电机的功率? 解:解:该机构为串联机构该机构为串联机构串联机构的总效率各级效串联机构的总效率各级效率的连乘积,故机构总效率:率的连乘积,故机构总效率:543212 求机构的工作功率求机构的工作功率 QPr82. 096. 095. 03 载荷上升的速度
2、:载荷上升的速度:smm/2 . 06012min/12 机构的工作功率为:机构的工作功率为:3. 电机的功率为:电机的功率为:KW1219582. 010000 rdPP KW100002 . 050000 1234567891011121314例例2 减速箱如图所示,已知每一对圆柱齿轮和圆锥齿轮的效率分别减速箱如图所示,已知每一对圆柱齿轮和圆锥齿轮的效率分别为为0.95 和和 0.92 , 求其总效率求其总效率。解:解:1. 分析传动路线。分析传动路线。减速箱分两路输出:减速箱分两路输出:电机电机齿轮齿轮1、23、45、67、8电机电机齿轮齿轮1、2、1011、1213、142. 每一路的
3、总效率分别为:每一路的总效率分别为: 81 14179. 092. 095. 03 79. 092. 095. 03 3. 整个机构的总效率为:整个机构的总效率为:diriPP 87654321 87654321 1234567891011121314148PPPri 14114818 PPPdidiriPPPPPP79. 079. 0148148PPPP diriPP %7979. 0 12345678910例例3 在图示的滚柱传动机构中,已知其局部效率在图示的滚柱传动机构中,已知其局部效率1-20.95 ,3-4 =5-6 =7-8 =9-10=0.93 ,求该机
4、构的效率求该机构的效率。解:解:1. 分析机构分析机构该机构为混联机构该机构为混联机构串联部分:圆柱齿轮串联部分:圆柱齿轮1、2并联部分:锥齿轮并联部分:锥齿轮3、4;5、6; 7、8 ; 9、10。2. 分别计算效率分别计算效率(1)串联部分:)串联部分:95. 021 (2)并联部分:)并联部分: 878P 434P 4P 103 656P10910 P10P 8P 6P 10393. 093. 093. 093. 093. 01086410864 PPPPPPPP3. 总效率总效率10321 %35.888835. 0 93. 095. 0 1091087865643410864 PPP
5、PPPPP例例4 在图在图5-4所示的机械传动中,设各传动机构的效率分别为所示的机械传动中,设各传动机构的效率分别为,98. 021,96. 043,94. 043 ;42. 05 ,5KWPr.2 . 0KWPr 并已知输出的功率分别为并已知输出的功率分别为求该机械传动装置的机械效率。求该机械传动装置的机械效率。5 44 3 32P2P dP1P2P3PrP4P 3P rP 21图图5-4解:解:由于由于1、2、3、4 为串联,故:为串联,故:4321 drPPrdPP 2296. 098. 0/5而机构而机构 1、2、3、4 、5 也为串联,故:也为串联,故:rdPP)42. 094. 0
6、98. 0/(2 . 022机构的总效率为:机构的总效率为:drPP ddrrPPPP dddPPP 4321 /54321 /KW561. 0KW649. 5561. 0649. 52 . 05837. 0例例5 图示滑块在驱动力图示滑块在驱动力 P 作用下沿斜面上滑(此为正行程),作用下沿斜面上滑(此为正行程),当驱动力由当驱动力由 P 减小至减小至 P时,滑块会在自重的作用下又沿斜面时,滑块会在自重的作用下又沿斜面下滑的趋势。问:下滑的趋势。问:1. 正行程时,滑块是否会自锁?正行程时,滑块是否会自锁?2. 反行程时滑块的自锁条件?反行程时滑块的自锁条件?211221N解:解:1. (1
7、)分析受力如图示分析受力如图示(2)列力平衡方程式列力平衡方程式(3)作力封闭多边形作力封闭多边形QPQ21N021 NQPPbac 90 90 90 90(4)列出驱动力列出驱动力 P 和阻力和阻力Q 的关系式的关系式 )sin( P)sin(cos PQ因为因为Q 不会小于等于零,故正行程不会自锁不会小于等于零,故正行程不会自锁Q)90sin( Q2. 求反行程时滑块的自锁条件求反行程时滑块的自锁条件211221NQP 当原驱动力由当原驱动力由 P 减小至减小至 P时,时, 滑块将滑块将在其重力在其重力 Q 的作用下有沿斜面下滑的的作用下有沿斜面下滑的趋势(注意,此时趋势(注意,此时 P为
8、阻力,为阻力, Q为驱为驱动力)动力)(1)分析受力如图示分析受力如图示(2)列力平衡方程式列力平衡方程式021 NQP(3)作力封闭多边形作力封闭多边形(4)列出驱动力列出驱动力 Q 和阻力和阻力P的关系式的关系式P ac 90 90 )sin( Pcos)sin( QPQ21Nb)90sin( Q0sincos)sin( QQ(5)求反行程自锁条件求反行程自锁条件i 按阻力求自锁条件按阻力求自锁条件0cos)sin( QP令:令:0)sin( 0)( ii 按效率求自锁条件按效率求自锁条件理想工作阻力理想工作阻力实际工作阻力实际工作阻力实际工作阻力实际工作阻力:0 cos)sin( QP理
9、想工作阻力理想工作阻力cos)sin(0 QP0PP sinQ 0cos)0sin( Q该类问题解题技巧该类问题解题技巧该题难点:该题难点:力多边形角度确定力多边形角度确定cos)sin( QP正行程正行程Q 与与P 的表达式的表达式反行程反行程Q 与与P的表达式的表达式cos)sin( QP(1)正、反行程表达式中,正、反行程表达式中,的符号不同;的符号不同;(2)正、反行程表达式中,正、反行程表达式中, Q 、P(P ) 的意义不同的意义不同结论:结论:在求反行程自锁条件时,只需求出正行程在求反行程自锁条件时,只需求出正行程Q与与 P的表的表 达式,反行程式在此基础将达式,反行程式在此基础
10、将反号;反号; 将将P 换成换成P , 并将驱动力、阻力角色互换。并将驱动力、阻力角色互换。 本章作业:本章作业:5-2,5-5 5-8,5-10。211221N例例6. 图示滑块在驱动力图示滑块在驱动力 P 作用下沿斜面上滑(此为正行程),作用下沿斜面上滑(此为正行程),当驱动力由当驱动力由 P 减小至减小至 P时,滑块会在自重的作用下有沿斜面时,滑块会在自重的作用下有沿斜面下滑的趋势。下滑的趋势。问:问:1. 正行程时,滑块是否会自锁?正行程时,滑块是否会自锁?2. 反行程时滑块的自锁条件?反行程时滑块的自锁条件?P解:解:1. (1)分析受力如图示分析受力如图示(2)列力平衡方程式列力平
11、衡方程式(3)作力封闭多边形作力封闭多边形021 NQP(4)列出驱动力列出驱动力 P 和阻力和阻力Q 的关系式的关系式)sin( P)cos()sin( QPbacPQ21NQ)(90 )(90sin( Q)tan( QPP0 tan)0tan(0QQP (5)求反行程自锁条件求反行程自锁条件由正行程驱动力由正行程驱动力P 与阻力与阻力Q的表达式的表达式)tan( QP可得反行程驱动力可得反行程驱动力Q 与阻力与阻力P 的表达式:的表达式:)tan( QP实际阻力实际阻力理想阻力理想阻力)0tan()tan( QQtan)tan( 90令:令:0 故正行程自锁条件为:故正行程自锁条件为:故反
12、行程自锁条件为:故反行程自锁条件为:令:令:0 0)tan( 0)( )tan( QP)tan(tan0 QQPP)tan(tan 90问:该题自锁条件怎样用阻力表示问:该题自锁条件怎样用阻力表示?4321FG例例7图示为一斜面夹具机构简图。下滑块图示为一斜面夹具机构简图。下滑块2上作用有力上作用有力F,推动,推动滑块滑块3向上运动,夹紧工件向上运动,夹紧工件4,G 为夹紧的工件为夹紧的工件4给滑块给滑块3的的反作用力(假定为已知),设各表面的摩擦系数为反作用力(假定为已知),设各表面的摩擦系数为f。试分析:试分析: 1. 为产生对工件为产生对工件4 的夹紧力的夹紧力G ,在滑块在滑块 2 上
13、需加多大的推力上需加多大的推力F;2. 当撤掉当撤掉F 后,工件可能松脱,问:后,工件可能松脱,问: 为防止松脱,至少应在滑块为防止松脱,至少应在滑块2 上上 维持多大的力维持多大的力F ? 3. 滑块在滑块在G 作用下的自锁条件。作用下的自锁条件。解:解: 1. 求夹紧工件所需的推力求夹紧工件所需的推力F;(1)取滑块取滑块3 为研究对象为研究对象在在F的作用下,滑块的作用下,滑块3有向上滑动的趋势有向上滑动的趋势ba 90 )2(90 (2)列平衡方程式列平衡方程式02313 RRFFG3113RF21G13RFc23RF(3)作力封闭多边形作力封闭多边形13RF23RF23RF431G2
14、Fa23RF(4)列出力列出力 G 和力和力FR23的关系式的关系式)2(90sin( G 90b23RF )2(90 G13RFcos)2cos(23RFG )2cos(cos23 GFR32RF2132RF)(90 902 F12RF(6)作力封闭多边形作力封闭多边形(5)取滑块取滑块 1 为分离体分析受力为分离体分析受力212RFcd12RF)90sin(23 RFF32RF431Gba23RF2G13RF32RFd 90FF(7)列出驱动力列出驱动力 F 和力和力FR32的关系式的关系式)2sin( Fcos)2sin(32 RFF)2cos(cos2332 GFFRRcos)2sin
15、()2cos(cos GF)2tan( GF)90sin(32 RF2 c2. 当撤掉当撤掉F 后,工件可能松脱,问:后,工件可能松脱,问: 为防止松脱,至少应在滑块为防止松脱,至少应在滑块2 上上 维持多大的力维持多大的力F ? 4312FG该问属于反行程问题,此时该问属于反行程问题,此时G 为为驱动力,驱动力, F为阻力为阻力。)2tan( GF由正行程力的表达式:由正行程力的表达式:)2tan( GF得出反行程力的表达式得出反行程力的表达式0tan)2tan( GG理想工作阻力理想工作阻力实际工作阻力实际工作阻力解得反行程自锁条件:解得反行程自锁条件:2 3. 滑块在滑块在G 作用下的自
16、锁条件。作用下的自锁条件。BA12例例8. 图示为一偏心夹具,图示为一偏心夹具,1为夹具体,为夹具体, 2为工件,为工件,3位偏心圆盘。位偏心圆盘。 为了夹紧为了夹紧工件,在偏心盘手柄上施加一工件,在偏心盘手柄上施加一F力,当力,当F去掉后,要求该夹具能去掉后,要求该夹具能自锁,求该夹具的自锁条件。自锁,求该夹具的自锁条件。3ABF解:解:分析分析在在F 力撤除后,偏心盘松脱趋势为力撤除后,偏心盘松脱趋势为逆时针转向。逆时针转向。只有当偏心盘在反力作用下产生顺时针只有当偏心盘在反力作用下产生顺时针作用的阻力矩时,机构具有自锁功能作用的阻力矩时,机构具有自锁功能在在F力作用下,工件夹紧,偏心盘力
17、作用下,工件夹紧,偏心盘顺时针转向;顺时针转向;问题:问题:反力如何作用会有阻力矩?反力如何作用会有阻力矩?33反力为:反力为:23RF13RF、13RFMM23RF13RF23RF13RF23RFXX1DBA1SeoE23AB用解析式描述自锁条件用解析式描述自锁条件S自锁条件:力自锁条件:力FR23作用线在摩擦圆内作用线在摩擦圆内用几何条件表示为:用几何条件表示为: 1SSoES )sin( esin2/1 DS23RF sin2)sin(1DeSScE30 iXF12例例9. 图示为凸轮机构,推杆图示为凸轮机构,推杆1在凸轮在凸轮3推力推力F的的 作用下,沿着导轨作用下,沿着导轨2向上运动
18、,摩擦面的向上运动,摩擦面的 摩擦系数为摩擦系数为f。为了避免发生自锁,试问。为了避免发生自锁,试问 导轨的长度导轨的长度 应满足什么条件。应满足什么条件。l3F解:分析解:分析(1)在力在力 F 的作用下,推杆有逆时针的作用下,推杆有逆时针 偏转的趋势,故在偏转的趋势,故在A、B两点与导两点与导 轨接触,由力平衡条件:轨接触,由力平衡条件:由由FN 引起的摩擦力为:引起的摩擦力为:21NNFF 21ffFF (2)不自锁条件为不自锁条件为: 12NfFfFF 0 AiM1NFFLlFN 1lLFFN/1 fFfFNN 21lLFf/2 Lfl 2L2NFAB2fF1fF本章作业:本章作业:5
19、-2,5-5 5-8,5-10。)( 2180sin( F例例10. 在图示的缓冲器中,若已知各楔块接触面间的摩擦系数在图示的缓冲器中,若已知各楔块接触面间的摩擦系数 f 及及弹簧的压力弹簧的压力FS,试求当楔块,试求当楔块 2、3 被等速推开及等速恢复原位时被等速推开及等速恢复原位时力力F 的大小,该机构的效率以及此缓冲器的大小,该机构的效率以及此缓冲器正、反行程正、反行程均不至发生均不至发生自锁的条件。自锁的条件。F解:解:1. 楔块楔块2、3 被推开为正行程被推开为正行程分别取块分别取块1、2 分析受力分析受力F1213 bcFFR31FR21)sin(21 RF)(2180sin()s
20、in(21 FFRFR31FR21)cos(221 FFRaSFSF2112FF 42RF12RF21RFa FFR21bcSFFR12FR42FSd)(90 )(2 )(2sinSF)cos()sin(2)cos(12 SRFF)cos(2 F21RF)(90sin(12 RF联立两式求解:联立两式求解:2112RRFF )sin(212 SRFF)cos(2 F得:得:)tan( FFS令:令:0 SF0)tan( F0)( 得正行程自锁条件为:得正行程自锁条件为: 得正行程不自锁条件为:得正行程不自锁条件为: 正行程效率正行程效率:tan)tan(FF 理想工作阻力理想工作阻力实际工作阻
21、力实际工作阻力tan)tan( 2. 楔块楔块2、3 等速恢复原位为反行程,此时等速恢复原位为反行程,此时FS为驱动力,原为驱动力,原 驱动力驱动力 F 降至降至F成为阻力成为阻力。)tan( FFS正行程驱动力与阻力关系表达式:正行程驱动力与阻力关系表达式:反行程驱动力与阻力关系表达式:反行程驱动力与阻力关系表达式:)tan( FFSFS 阻力阻力F 驱动力驱动力F阻力阻力FS 驱动力驱动力反行程自锁条件:反行程自锁条件:SSFF0 90)( 90反行程不自锁条件:反行程不自锁条件: 900 )tan(tan FF正、反行程均不自锁条件:正、反行程均不自锁条件: 9011P2例例11. 图示焊接用的楔形夹具,图示焊接用的楔形夹具,1、1为焊接工件,为焊接工件,2为夹具体,为夹具体,3为楔块,各接触面间摩擦系数均为为楔块,各接触面间摩擦系数均为f,试确定此夹具的自锁条件,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版安置就业见习生培养协议书范文3篇
- 二零二五版基因合成与生物制药研发合同3篇
- 《平行四边形的面积》(说课稿)-2024-2025学年五年级上册数学苏教版
- 2025年度餐饮行业供应链租赁合同3篇
- 二零二五版文化艺术交流活动合作协议3篇
- 个人股权转让合同(2024版)2篇
- 三年级数学计算题专项练习及答案
- 构建完善的家政服务人才评价体系
- 电力施工合同
- 主体工程承包合同
- 替格瑞洛药物作用机制、不良反应机制、与氯吡格雷区别和合理使用
- 河北省大学生调研河北社会调查活动项目申请书
- GB/T 20920-2007电子水平仪
- 如何提高教师的课程领导力
- 企业人员组织结构图
- 日本疾病诊断分组(DPC)定额支付方式课件
- 两段焙烧除砷技术简介 - 文字版(1)(2)课件
- 实习证明模板免费下载【8篇】
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- 案件受理登记表模版
- 最新焊接工艺评定表格
评论
0/150
提交评论