高数第五章定积分及其应用_第1页
高数第五章定积分及其应用_第2页
高数第五章定积分及其应用_第3页
高数第五章定积分及其应用_第4页
高数第五章定积分及其应用_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第五章 定积分及其应用第一节 定积分的概念与性质第二节 微积分基本公式第三节 定积分的换元法及分部积分法第四节 反常积分第五节 定积分在几何上的应用abxyo? A曲边梯形由连续曲线曲边梯形由连续曲线实例实例1 1 (求曲边梯形的面积)(求曲边梯形的面积))(xfy )0)( xf、x轴轴与与两两条条直直线线ax 、bx 所所围围成成.一、问题的提出)(xfy abxyoabxyo用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积(四个小矩形)(四个小矩形)(九个小矩形)(九个小矩形)曲边梯形

2、如图所示,曲边梯形如图所示,,1210bxxxxxabann 个分点,个分点,内插入若干内插入若干在区间在区间abxyoi ix1x1 ix1 nx;,11 iiiiixxxxxnba长度为长度为,个小区间个小区间分成分成把区间把区间,上任取一点上任取一点在每个小区间在每个小区间iiixx ,1 iiixfA )( 为为高高的的小小矩矩形形面面积积为为为为底底,以以)(,1iiifxx iniixfA )(1 曲边梯形面积的近似值为曲边梯形面积的近似值为iniixfA )(lim10 时,时,趋近于零趋近于零即小区间的最大长度即小区间的最大长度当分割无限加细当分割无限加细)0(,max,21

3、nxxx曲边梯形面积为曲边梯形面积为设设函函数数)(xf在在,ba上上有有界界,记记,max21nxxx ,如如果果不不论论对对,ba在在,ba中任意插入中任意插入若若干干个个分分点点bxxxxxann 1210把把区区间间,ba分分成成n个个小小区区间间,各各小小区区间间的的长长度度依依次次为为1 iiixxx,), 2 , 1( i,在在各各小小区区间间上上任任取取一点一点i (iix ),),作作乘乘积积iixf )( ), 2 , 1( i并作和并作和iinixfS )(1 ,二、定积分的定义定义定义怎怎样样的的分分法法, baIdxxf)(iinixf )(lim10 被积函数被积函

4、数被积表达式被积表达式积分变量积分变量积分区间积分区间,ba也也不不论论在在小小区区间间,1iixx 上上点点i 怎样的取法,怎样的取法,只只要要当当0 时时,和和S总趋于总趋于确定的极限确定的极限I,我我们们称称这这个个极极限限I为为函函数数)(xf在在区区间间,ba上上的的定定积积分分,记为记为积分上限积分上限积分下限积分下限积分和积分和注意:注意:(1) 积积分分值值仅仅与与被被积积函函数数及及积积分分区区间间有有关关, badxxf)( badttf)( baduuf)((2)定义中区间的分法和)定义中区间的分法和i 的取法是任意的的取法是任意的.(3 3)当函数)当函数)(xf在区间

5、在区间,ba上的定积分存在时,上的定积分存在时,而而与与积积分分变变量量的的字字母母无无关关.称称)(xf在区间在区间,ba上上可积可积. 当当函函数数)(xf在在区区间间,ba上上连连续续时时,定理定理1 1定理定理2 2 设函数设函数)(xf在区间在区间,ba上有界,上有界,称称)(xf在在区区间间,ba上上可可积积. .且且只只有有有有限限个个间间断断点点,则则)(xf在在三、存在定理区区间间,ba上上可可积积. ., 0)( xf baAdxxf)(曲边梯形的面积曲边梯形的面积, 0)( xf baAdxxf)(曲边梯形的面积曲边梯形的面积的负值的负值1A2A3A4A4321)(AAA

6、Adxxfba 四、定积分的几何意义几何意义:几何意义:积取负号积取负号轴下方的面轴下方的面在在轴上方的面积取正号;轴上方的面积取正号;在在数和数和之间的各部分面积的代之间的各部分面积的代直线直线的图形及两条的图形及两条轴、函数轴、函数它是介于它是介于xxbxaxxfx ,)( 对定积分的对定积分的补充规定补充规定:(1)当)当ba 时,时,0)( badxxf;(2)当当ba 时时, abbadxxfdxxf)()(.说明说明 在下面的性质中,假定定积分都存在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小在,且不考虑积分上下限的大小五、定积分的性质 badxxgxf)()( bad

7、xxf)( badxxg)(.性质性质1 1 babadxxfkdxxkf)()( (k为为常常数数).性质性质2 2 badxxf)( bccadxxfdxxf)()(.假设假设bca 性质性质3 3dxba 1dxba ab .性质性质4 4则则0)( dxxfba. . )(ba 性质性质5 5如如果果在在区区间间,ba上上0)( xf,性质性质5 5的推论:的推论:则则dxxfba )( dxxgba )(. . )(ba 如如果果在在区区间间,ba上上)()(xgxf ,(1)dxxfba )(dxxfba )(.)(ba (2)设设M及及m分分别别是是函函数数则则 )()()(ab

8、Mdxxfabmba . .)(xf在在区区间间,ba上上的的最最大大值值及及最最小小值值,性质性质6 6(此性质可用于估计积分值的大致范围)(此性质可用于估计积分值的大致范围)如如果果函函数数)(xf在在闭闭区区间间,ba上上连连续续,证证Mdxxfabmba )(1)()()(abMdxxfabmba 由闭区间上连续函数的介值定理知由闭区间上连续函数的介值定理知则则在在积积分分区区间间,ba上上至至少少存存在在一一个个点点 ,使使dxxfba )()(abf . . )(ba 性质性质7 7(定积分中值定理)(定积分中值定理)积分中值公式积分中值公式在区间在区间,ba上至少存在一个点上至少

9、存在一个点 ,使使,)(1)( badxxfabfdxxfba )()(abf .)(ba 在区间在区间,ba上至少存在一上至少存在一个点个点 ,即即积分中值公式的几何解释:积分中值公式的几何解释:xyoab )( f使使得得以以区区间间,ba为为以以曲曲线线)(xfy 底底边边,为曲边的曲边梯形的面积为曲边的曲边梯形的面积等于同一底边而高为等于同一底边而高为)( f的的一一个个矩矩形形的的面面积积。六、小结定积分的实质定积分的实质:特殊和式的极限:特殊和式的极限定积分的思想和方法:定积分的思想和方法:分割分割化整为零化整为零求和求和积零为整积零为整取极限取极限精确值精确值定积分定积分求近似以

10、直(不变)代曲(变)求近似以直(不变)代曲(变)取极限取极限3定积分的性质定积分的性质(注意估值性质、积分中值定理的应用)(注意估值性质、积分中值定理的应用)典型问题典型问题()估计积分值;()估计积分值;()不计算定积分比较积分大小()不计算定积分比较积分大小 设函数设函数)(xf在区间在区间,ba上连续,并且设上连续,并且设x为为,ba上的一点,上的一点, xadxxf)(考察定积分考察定积分 xadttf)(记记.)()( xadttfx积分上限函数积分上限函数 如如果果上上限限x在在区区间间,ba上上任任意意变变动动,则则对对于于每每一一个个取取定定的的x值值,定定积积分分有有一一个个

11、对对应应值值,所所以以它它在在,ba上上定定义义了了一一个个函函数数,一、积分上限函数及其导数定定理理 如如果果)(xf在在,ba上上连连续续,则则积积分分上上限限的的函函数数dttfxxa )()(在在,ba上上具具有有导导数数,且且它它的的导导数数是是)()()(xfdttfdxdxxa )(bxa 积分上限函数的性质积分上限函数的性质定理定理2 2(原函数存在定理)(原函数存在定理) 如果如果)(xf在在,ba上连续,则积分上限的函上连续,则积分上限的函数数dttfxxa )()(就是就是)(xf在在,ba上的一个上的一个原函数原函数. .定理的重要意义:定理的重要意义:(1)肯定了连续

12、函数的原函数是存在的)肯定了连续函数的原函数是存在的.(2)初步揭示了积分学中的定积分与原函数之)初步揭示了积分学中的定积分与原函数之间的联系间的联系.定理定理 3 3(微积分基本公式)(微积分基本公式)如如果果)(xF是是连连续续函函数数)(xf在在区区间间,ba上上的的一一个个原原函函数数,则则)()()(aFbFdxxfba . .二、牛顿莱布尼茨公式)()()(aFbFdxxfba 微积分基本公式表明:微积分基本公式表明: baxF)( 一个连续函数在区间一个连续函数在区间,ba上的定积分等于上的定积分等于它的任意一个原函数在区间它的任意一个原函数在区间,ba上的增量上的增量.注意注意

13、当当ba 时,时,)()()(aFbFdxxfba 仍成立仍成立.求定积分问题转化为求原函数的问题求定积分问题转化为求原函数的问题.例例 求求 .)1sincos2(20 dxxx原式原式 20cossin2 xxx .23 例例 设设 求求 . 215102)(xxxxf 20)(dxxf解解解解 102120)()()(dxxfdxxfdxxf在在2 , 1上上规规定定当当1 x时时,5)( xf, 102152dxxdx原式原式. 6 xyo123.微积分基本公式微积分基本公式1.积分上限函数积分上限函数 xadttfx)()(2.积分上限函数的导数积分上限函数的导数)()(xfx )(

14、)()(aFbFdxxfba 三、小结定理定理 假假设设(1 1))(xf在在,ba上上连连续续;(2 2)函函数数)(tx 在在, 上上是是单单值值的的且且有有连连续续导导数数;(3 3)当)当t在区间在区间, 上变化时,上变化时,)(tx 的值的值在在,ba上变化,且上变化,且a )( 、b )( , 则则 有有dtttfdxxfba )()()(. .一、换元公式注注意意 当当 时时,换换元元公公式式仍仍成成立立.应用换元公式时应注意应用换元公式时应注意:(1)求出求出)()(ttf 的一个原函数的一个原函数)(t 后,不后,不必象计算不定积分那样再要把必象计算不定积分那样再要把)(t

15、变换成原变换成原变量变量x的函数,而只要把新变量的函数,而只要把新变量t 的上、下限的上、下限分别代入分别代入)(t 然后相减就行了然后相减就行了.(2)用用)(tx 把变量把变量x换成新变量换成新变量t时,积分限也时,积分限也相应的改变相应的改变.例例 计算计算.sincos205 xdxx解解令令,cosxt 2 x, 0 t0 x, 1 t 205sincosxdxx 015dtt1066t .61 ,sin xdxdt 例例 计算计算解解.)ln1(ln43 eexxxdx原式原式 43)ln1(ln)(lneexxxd 43)ln1(ln)(lneexxxd 432)ln(1ln2e

16、exxd 43)lnarcsin(2eex .6 例例 计算计算解解 aadxxax022)0(.1令令,sintax ax ,2 t0 x, 0 t,costdtadx 原式原式 2022)sin1(sincosdttatata 20cossincosdtttt 20cossinsincos121dttttt 20cossinln21221 tt.4 例例 当当)(xf在在,aa 上上连连续续,且且有有 )(xf为为偶偶函函数数,则则 aaadxxfdxxf0)(2)(; )(xf为为奇奇函函数数,则则 aadxxf0)(. 设设函函数数)(xu、)(xv在在区区间间 ba,上上具具有有连连

17、续续导导数数,则则有有 bababavduuvudv. .定积分的分部积分公式定积分的分部积分公式二、分部积分公式例例1 1 计算计算.arcsin210 xdx解解令令,arcsin xu ,dxdv ,12xdxdu ,xv 210arcsin xdx 210arcsin xx 21021xxdx621 )1(112120221xdx 12 21021x . 12312 则则例例2 2 计算计算解解.2cos140 xxdx,cos22cos12xx 402cos1xxdx 402cos2xxdx xdxtan240 40tan21 xxxdxtan2140 40secln218 x.42

18、ln8 定积分的分部积分公式定积分的分部积分公式 . bababavduuvudv三、小结定积分的换元法定积分的换元法dxxfba )(dtttf )()(定义定义 1 1 设函数设函数)(xf在区间在区间), a上连续,取上连续,取ab ,如果极限,如果极限 babdxxf)(lim存在,则称此极存在,则称此极限为函数限为函数)(xf在无穷区间在无穷区间), a上的广义积上的广义积分,记作分,记作 adxxf)(. . adxxf)( babdxxf)(lim当极限存在时,称广义积分收敛;当极限不存在当极限存在时,称广义积分收敛;当极限不存在时,称广义积分发散时,称广义积分发散. .一、无穷

19、限的广义积分类似地,设函数类似地,设函数)(xf在区间在区间,(b上连续,取上连续,取ba ,如果极限,如果极限 baadxxf)(lim存在,则称此极存在,则称此极限为函数限为函数)(xf在无穷区间在无穷区间,(b上的广义积上的广义积分,记作分,记作 bdxxf)(. . bdxxf)( baadxxf)(lim当当极极限限存存在在时时,称称广广义义积积分分收收敛敛;当当极极限限不不存存在在时时,称称广广义义积积分分发发散散. . 设函数设函数)(xf在区间在区间),(上连续上连续, ,如果如果广义积分广义积分 0)(dxxf和和 0)(dxxf都收敛,则都收敛,则称上述两广义积分之和为函数

20、称上述两广义积分之和为函数)(xf在无穷区间在无穷区间),(上的广义积分,记作上的广义积分,记作 dxxf)(. . dxxf)( 0)(dxxf 0)(dxxf 0)(limaadxxf bbdxxf0)(lim极限存在称广义积分收敛;否则称广义积分发散极限存在称广义积分收敛;否则称广义积分发散. .例例1 1 计算广义积分计算广义积分.12 xdx解解 21xdx 021xdx 021xdx 0211limaadxx bbdxx0211lim 0arctanlimaax bbx0arctanlim aaarctanlim bbarctanlim .22 例例2 2 计算广义积分计算广义积分

21、解解.1sin122 dxxx 21sin12dxxx 211sinxdx bbxdx211sinlimbbx 21coslim 2cos1coslim bb. 1 定义定义 2 2 设函数设函数)(xf在区间在区间,(ba上连续,而在上连续,而在点点a的右邻域内无界取的右邻域内无界取0 ,如果极限,如果极限 badxxf )(lim0存在,则称此极限为函数存在,则称此极限为函数)(xf在区间在区间,(ba上的广义积分,记作上的广义积分,记作 badxxf)(. . badxxf)( badxxf )(lim0当当极极限限存存在在时时,称称广广义义积积分分收收敛敛;当当极极限限不不存存在在时时

22、,称称广广义义积积分分发发散散. .二、被积函数具有无穷间断点的广义积分类似地,设函数类似地,设函数)(xf在区间在区间),ba上连续,上连续,而在点而在点b的左邻域内无界的左邻域内无界. .取取0 ,如果极限,如果极限 badxxf)(lim0存在,则称此极限为函数存在,则称此极限为函数)(xf在区间在区间),ba上的广义积分,上的广义积分,记作记作 badxxf)( badxxf)(lim0. .当当极极限限存存在在时时,称称广广义义积积分分收收敛敛;当当极极限限不不存存在在时时,称称广广义义积积分分发发散散. .设设函函数数)(xf在在区区间间,ba上上除除点点)(bcac 外外连连续续

23、,而而在在点点c的的邻邻域域内内无无界界. .如如果果两两个个广广义义积积分分 cadxxf)(和和 bcdxxf)(都都收收敛敛,则则定定义义 badxxf)( cadxxf)( bcdxxf)( cadxxf)(lim0 bcdxxf )(lim0否否则则,就就称称广广义义积积分分 badxxf)(发发散散. .定义中定义中C为为瑕点瑕点,以上积分称为,以上积分称为瑕积分瑕积分.例例5 5 计算广义积分计算广义积分解解).0(022 axadxa,1lim220 xaaxax 为为被被积积函函数数的的无无穷穷间间断断点点. axadx022 axadx0220lim aax00arcsin

24、lim 0arcsinlim0aa .2 例例7 7 计算广义积分计算广义积分解解.ln21 xxdx 21ln xxdx 210lnlim xxdx 210ln)(lnlim xxd 210)ln(lnlim x )1ln(ln()2ln(lnlim0 . 故原广义积分发散故原广义积分发散.例例8 8 计算广义积分计算广义积分解解.)1(3032 xdx1 x瑕点瑕点 3032)1(xdx 103132)1()(xdx 1032)1(xdx 10032)1(limxdx3 3132)1(xdx 31032)1(lim xdx, 233 3032)1(xdx).21(33 无界函数的广义积分(

25、无界函数的广义积分(瑕积分瑕积分)无穷限的广义积分无穷限的广义积分 dxxf)( bdxxf)( adxxf)( cabcbadxxfdxxfdxxf)()()((注意注意:不能忽略内部的瑕点):不能忽略内部的瑕点) badxxf)(三、小结回顾回顾 曲边梯形求面积的问题曲边梯形求面积的问题 badxxfA)(一、定积分的元素法曲曲 边边 梯梯 形形 由由 连连 续续 曲曲 线线)(xfy )0)( xf、x轴轴与与两两条条直直线线ax 、bx 所所围围成成。ab xyo)(xfy 面积表示为定积分的步骤如下面积表示为定积分的步骤如下(1)把区间)把区间,ba分成分成n个长度为个长度为ix 的

26、小区间,的小区间,相应的曲边梯形被分为相应的曲边梯形被分为n个小窄曲边梯形,第个小窄曲边梯形,第i 小窄曲边梯形的面积为小窄曲边梯形的面积为iA ,则,则 niiAA1.(2)计算)计算iA 的近似值的近似值iiixfA )( iix (3) 求和,得求和,得A的近似值的近似值.)(1iinixfA ab xyo)(xfy (4) 求极限,得求极限,得A的精确值的精确值iinixfA )(lim10 badxxf)(提示提示 若用若用A 表示任一小区间表示任一小区间,xxx 上的窄曲边梯形的面积,上的窄曲边梯形的面积,则则 AA,并取,并取dxxfA)( ,于是于是 dxxfA)( dxxfA

27、)(lim.)( badxxfxdxx dA面积元素面积元素当所求量当所求量U符合下列条件:符合下列条件:(1)U是是与与一一个个变变量量x的的变变化化区区间间 ba,有有关关的的量量;(2)U对于区间对于区间 ba,具有可加性,就是说,具有可加性,就是说,如果把区间如果把区间 ba,分成许多部分区间,则分成许多部分区间,则U相相应地分成许多部分量,而应地分成许多部分量,而U等于所有部分量之等于所有部分量之和;和;(3)部分量)部分量iU 的近似值可表示为的近似值可表示为iixf )( ;就可以考虑用定积分来表达这个量就可以考虑用定积分来表达这个量U元素法的一般步骤:元素法的一般步骤:1)根根

28、据据问问题题的的具具体体情情况况,选选取取一一个个变变量量例例如如x为为积积分分变变量量,并并确确定定它它的的变变化化区区间间,ba;2)设设想想把把区区间间,ba分分成成n个个小小区区间间,取取其其中中任任一一小小区区间间并并记记为为,dxxx ,求求出出相相应应于于这这小小区区间间的的部部分分量量U 的的近近似似值值.如如果果U 能能近近似似地地表表示示为为,ba上上的的一一个个连连续续函函数数在在x处处的的值值)(xf与与dx的的乘乘积积,就就把把dxxf)(称称为为量量U的的元元素素且且记记作作dU,即即dxxfdU)( ;3)以以所所求求量量U的的元元素素dxxf)(为为被被积积表表

29、达达式式,在在区区间间,ba上上作作定定积积分分,得得 badxxfU)(,即即为为所所求求量量U的的积积分分表表达达式式.这个方法通常叫做这个方法通常叫做元素法元素法应用方向:应用方向:平面图形的面积;体积;平面曲线的弧长;平面图形的面积;体积;平面曲线的弧长;功;水压力;引力和平均值等功;水压力;引力和平均值等xyo)(xfy abxyo)(1xfy )(2xfy ab曲边梯形的面积曲边梯形的面积 badxxfA)(曲边梯形的面积曲边梯形的面积 badxxfxfA)()(12二、直角坐标系情形下平面图形的面积xxxx x 例例 1 1 计计算算由由两两条条抛抛物物线线xy 2和和2xy 所

30、所围围成成的的图图形形的的面面积积.解解两曲线的交点两曲线的交点)1 , 1()0 , 0(面积元素面积元素dxxxdA)(2 选选 为积分变量为积分变量x1 , 0 xdxxxA)(210 10333223 xx.31 2xy 2yx 例例 2 2 计计算算由由曲曲线线xxy63 和和2xy 所所围围成成的的图图形形的的面面积积.解解两曲线的交点两曲线的交点).9 , 3(),4 , 2(),0 , 0( 236xyxxy选选 为积分变量为积分变量x3, 2 x,0, 2)1( xdxxxxdA)6(231 ,3 , 0)2( xdxxxxdA)6(322 2xy xxy63 于是所求面积于

31、是所求面积21AAA dxxxxA)6(2023 dxxxx)6(3230 .12253 说明:注意各积分区间上被积函数的形式说明:注意各积分区间上被积函数的形式问题:问题:积分变量只能选积分变量只能选 吗?吗?x例例 3 3 计计算算由由曲曲线线xy22 和和直直线线4 xy所所围围成成的的图图形形的的面面积积.解解两曲线的交点两曲线的交点).4 , 8(),2, 2( 422xyxy选选 为积分变量为积分变量y4, 2 ydyyydA 242.1842 dAAxy22 4 xy如果曲边梯形的曲边为参数方程如果曲边梯形的曲边为参数方程 )()(tytx 曲边梯形的面积曲边梯形的面积.)()(

32、21 ttdtttA (其其中中1t和和2t对对应应曲曲线线起起点点与与终终点点的的参参数数值值)在在1t,2t(或(或2t,1t)上)上)(tx 具有连续导数,具有连续导数,)(ty 连续连续.例例 4 4 求椭圆求椭圆12222 byax的面积的面积.解解椭圆的参数方程椭圆的参数方程 tbytaxsincos由对称性知总面积等于由对称性知总面积等于4倍第一象限部分面积倍第一象限部分面积 aydxA04 02)cos(sin4tatdbdttab 202sin4.ab 设由曲线设由曲线)( r及射线及射线 、 围成一曲边扇围成一曲边扇形,求其面积这里,形,求其面积这里,)( 在在, 上连续,

33、且上连续,且0)( xo d d 面积元素面积元素 ddA2)(21 曲边扇形的面积曲边扇形的面积.)(212 dA 三、极坐标系情形情形下平面图形的面积)( r例例 5 5 求求双双纽纽线线 2cos22a 所所围围平平面面图图形形的的面面积积.解解由对称性知总面积由对称性知总面积=4倍第倍第一象限部分面积一象限部分面积14AA daA2cos214402 .2a xy 2cos22a 1A例例 6 6 求心形线求心形线)cos1( ar所围平面图形的所围平面图形的面积面积)0( a.解解 dadA22)cos1(21 利用对称性知利用对称性知.232a d d2)cos1( 02212aA

34、 d)coscos21(2 02a 2sin41sin2232a 0求在直角坐标系下、参数方程形式求在直角坐标系下、参数方程形式下、极坐标系下平面图形的面积下、极坐标系下平面图形的面积.(注意恰当的(注意恰当的选择积分变量选择积分变量有助于简化有助于简化积分运算)积分运算)四、小结 旋转体旋转体就是由一个平面图形绕这平面内就是由一个平面图形绕这平面内一条直线旋转一周而成的立体这直线叫做一条直线旋转一周而成的立体这直线叫做旋转轴旋转轴圆柱圆柱圆锥圆锥圆台圆台一、旋转体的体积一一般般地地,如如果果旋旋转转体体是是由由连连续续曲曲线线)(xfy 、直直线线ax 、bx 及及x轴轴所所围围成成的的曲曲

35、边边梯梯形形绕绕x轴轴旋旋转转一一周周而而成成的的立立体体,体体积积为为多多少少?取取积积分分变变量量为为x,,bax 在在,ba上任取小区上任取小区间间,dxxx ,取取以以dx为为底底的的窄窄边边梯梯形形绕绕x轴轴旋旋转转而而成成的的薄薄片片的的体体积积为为体体积积元元素素,dxxfdV2)( xdxx xyo旋转体的体积为旋转体的体积为dxxfVba2)( )(xfy y例例 1 1 连接坐标原点连接坐标原点O及点及点),(rhP的直线、直线的直线、直线hx 及及x轴围成一个直角三角形将它绕轴围成一个直角三角形将它绕x轴旋轴旋转构成一个底半径为转构成一个底半径为r、高为、高为h的圆锥体,

36、计算的圆锥体,计算圆锥体的体积圆锥体的体积r解解hPxhry 取取积积分分变变量量为为x,, 0hx 在在, 0h上任取小区间上任取小区间,dxxx ,xo直线直线 方程为方程为OP以以dx为为底底的的窄窄边边梯梯形形绕绕x轴轴旋旋转转而而成成的的薄薄片片的的体体积积为为dxxhrdV2 圆圆锥锥体体的的体体积积dxxhrVh20 hxhr03223 .32hr yrhPxo 类类似似地地,如如果果旋旋转转体体是是由由连连续续曲曲线线)(yx 、直直线线cy 、dy 及及y轴轴所所围围成成的的曲曲边边梯梯形形绕绕y轴轴旋旋转转一一周周而而成成的的立立体体,体体积积为为xyo)(yx cddyy

37、2)( dcV补充补充 如果旋转体是由连续曲线如果旋转体是由连续曲线)(xfy 、直线直线ax 、bx 及及x轴所围成的曲边梯形绕轴所围成的曲边梯形绕y轴旋转一周而成的立体,体积为轴旋转一周而成的立体,体积为dxxfxVbay| )(|2 例例 4 4 求由曲线求由曲线24xy 及及0 y所围成的图形所围成的图形绕直线绕直线3 x旋转构成旋转体的体积旋转构成旋转体的体积.解解取取积积分分变变量量为为y,4 , 0 y体积元素为体积元素为dyQMPMdV22 dyyy)43()43(22 ,412dyy dyyV 40412.64 3dyPQMxoab二、平行截面面积为已知的立体的体积二、平行截

38、面面积为已知的立体的体积xdxx 如果一个立体不是旋转体,但却知道该立如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算个立体的体积也可用定积分来计算.)(xA表表示示过过点点x且且垂垂直直于于x轴轴的的截截面面面面积积,)(xA为为x的的已已知知连连续续函函数数,)(dxxAdV .)( badxxAV立体体积立体体积例例 5 5 一一平平面面经经过过半半径径为为R的的圆圆柱柱体体的的底底圆圆中中心心,并并与与底底面面交交成成角角 ,计计算算这这平平面面截截圆圆柱柱体体所所得得立立体体的的体体积积

39、.RR xyo解解 取坐标系如图取坐标系如图底圆方程为底圆方程为222Ryx 垂直于垂直于x轴的截面为直角三角形轴的截面为直角三角形x截面面积截面面积,tan)(21)(22 xRxA 立体体积立体体积dxxRVRR tan)(2122 .tan323 R 例例 6 6 求求以以半半径径为为R的的圆圆为为底底、平平行行且且等等于于底底圆圆直直径径的的线线段段为为顶顶、高高为为h的的正正劈劈锥锥体体的的体体积积. 解解取坐标系如图取坐标系如图底圆方程为底圆方程为,222Ryx xyoRx垂直于垂直于x轴的截面为等腰三角形轴的截面为等腰三角形截面面积截面面积22)(xRhyhxA 立体体积立体体积

40、dxxRhVRR 22.212hR 旋转体的体积旋转体的体积平行截面面积为已知的立体的体积平行截面面积为已知的立体的体积 绕绕 轴旋转一周轴旋转一周x绕绕 轴旋转一周轴旋转一周y绕非轴直线旋转一周绕非轴直线旋转一周三、小结xoy0MA nMB 1M2M1 nM设设A、B是是曲曲线线弧弧上上的的两两个个端端点点,在在弧弧上上插插入入分分点点BMMMMMAnni ,110并依次连接相邻分点得一内接折线,当分点的数目并依次连接相邻分点得一内接折线,当分点的数目无限增加且每个小弧段都缩向一点时,无限增加且每个小弧段都缩向一点时,此折线的长此折线的长|11 niiiMM的极限存在,则称此极限为的极限存在

41、,则称此极限为曲线弧曲线弧AB的弧长的弧长.一、平面曲线弧长的概念 设设曲曲线线弧弧为为)(xfy )(bxa ,其其中中)(xf在在,ba上上有有一一阶阶连连续续导导数数xoyabxdxx 取取积积分分变变量量为为x,在在,ba上上任任取取小小区区间间,dxxx ,以对应小切线段的长代替小弧段的长以对应小切线段的长代替小弧段的长 dy小小切切线线段段的的长长22)()(dydx dxy21 弧长元素弧长元素dxyds21 弧长弧长.12dxysba 二、直角坐标情形例例 1 1 计算曲线计算曲线2332xy 上相应于上相应于x从从a到到b的一段的一段弧的长度弧的长度.解解,21xy dxxds2)(121 ,1dxx 所求弧长为所求弧长为dxxsba 1.)1()1(322323ab ab曲线弧为曲线弧为,)()( tytx )( t其其中中)(),(tt 在在, 上上具具有有连连续续导导数数.22)()(dydx

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论