版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十讲第十讲 回归分析、线性回归和曲线估计回归分析、线性回归和曲线估计n第一部分第一部分 上一讲回顾上一讲回顾n第二部分第二部分 回归分析回归分析n第三部分第三部分 线性回归线性回归n第四部分第四部分 曲线估计曲线估计第一部分第一部分 第十讲回顾第十讲回顾 在对其他变量的影响进行控制在对其他变量的影响进行控制的条件下,衡量多个变量中某两个的条件下,衡量多个变量中某两个变量之间的线性相关程度的指标称变量之间的线性相关程度的指标称为为偏相关系数偏相关系数。偏相关分析的公式表达0102 1201.222110212rr rrrr 0203.2 13.201.23221103.23.2rrrrrr 0
2、 .12 (1)(1) (1)0 .12 (1).12 (1)(1) (1)0 .12 (1)(1)22110 .12 (1).12 (1)(1) (1)iiipppipiipiiipppipiiprrrrrr L LL LL LL LL LL LL LL LL LL L相关分析的命令语句相关分析的命令语句nPARTIAL CORRPARTIAL CORRn /VARIABLES= /VARIABLES= 身高身高 肺活量肺活量 BY BY 体重体重n /SIGNIFICANCE=TWOTAIL/SIGNIFICANCE=TWOTAILn /STATISTICS=DESCRIPTIVES CO
3、RR /STATISTICS=DESCRIPTIVES CORRn /MISSING=LISTWISE . /MISSING=LISTWISE .结果分析结果分析n一、描述性统计量一、描述性统计量相关系数相关系数零阶相关矩阵关系零阶相关矩阵关系距离分析距离分析n距离分析的概念距离分析的概念 距离分析距离分析:对观测量之间或变量之间相似或:对观测量之间或变量之间相似或不相似程度的一种测度,是计算一对变量之不相似程度的一种测度,是计算一对变量之间或一对观测量之间的广义的距离。间或一对观测量之间的广义的距离。 在距离分析过程中,主要利用变量间的在距离分析过程中,主要利用变量间的相似性测度相似性测度(
4、SimilaritiesSimilarities)和)和不相似性测不相似性测度度(DissimilaritiesDissimilarities)度量两者之间的关系)度量两者之间的关系距离分析命令语句距离分析命令语句nPROXIMITIESn 身高 体重 肺活量n /VIEW=VARIABLEn /MEASURE= CORRELATIONn /STANDARDIZE= NONE .结果分析结果分析n距离分析的个案处理摘要距离分析的个案处理摘要n距离分析的距离分析的 相似性矩阵相似性矩阵什么是回归分析?什么是回归分析?1、重点考察一个特定的重点考察一个特定的变量变量( (因变量因变量) ),而,而
5、把把其他变量其他变量( (自变量自变量) )看作是影响这一变看作是影响这一变量的因素量的因素,并通过适当的数学模型将变,并通过适当的数学模型将变量间的关系表达出来量间的关系表达出来2、利用样本数据利用样本数据建立模型建立模型的估计方程的估计方程3、对模型进行、对模型进行显著性检验显著性检验4、进而通过一个或几个自变量的取值来、进而通过一个或几个自变量的取值来估估计计或或预测预测因变量的取值因变量的取值第二部分第二部分 回归分析回归分析回归分析的模型回归分析的模型 一、分类一、分类按是否线性分:按是否线性分:线性回归模型线性回归模型和和非线性回归模型非线性回归模型按自变量个数分:按自变量个数分:
6、简单的一元回归简单的一元回归和和多元回归多元回归 二、基本的步骤二、基本的步骤 利用利用SPSSSPSS得到模型关系式,是否是我们所要的?得到模型关系式,是否是我们所要的? 要看要看回归方程回归方程的显著性检验的显著性检验(F F检验)检验) 回归系数回归系数b的显著性检验的显著性检验(T(T检验检验) ) 拟合程度拟合程度R R2 2 ( (注:注:相关系数的平方相关系数的平方,一元回归用,一元回归用R SquareR Square,多元回归,多元回归用用Adjusted R SquareAdjusted R Square) )回归分析的回归分析的过程过程 在回归过程中包括:在回归过程中包括
7、:nLinerLiner:线性回归:线性回归nCurve EstimationCurve Estimation:曲线估计:曲线估计 Binary LogisticBinary Logistic: 二分变量逻辑回归二分变量逻辑回归 Multinomial LogisticMultinomial Logistic:多分变量逻辑回归;:多分变量逻辑回归; Ordinal Ordinal 序回归;序回归;ProbitProbit:概率单位回归;:概率单位回归; NonlinearNonlinear:非线性回归;:非线性回归; Weight EstimationWeight Estimation:加权估
8、计;:加权估计; 2-Stage Least squares2-Stage Least squares:二段最小平方法;:二段最小平方法; Optimal Scaling Optimal Scaling 最优编码回归最优编码回归n我们只讲前面我们只讲前面2 2个简单的(一般教科书的讲法)个简单的(一般教科书的讲法)第三部分第三部分 线性回归线性回归 线性回归分为线性回归分为一元线性回归一元线性回归和和多元线性回归多元线性回归。一、一元线性回归:一、一元线性回归:1 1、涉及一个自变量的回归涉及一个自变量的回归2 2、因变量因变量y y与自变量与自变量x x之间为线性关系之间为线性关系n被预测或
9、被解释的变量称为被预测或被解释的变量称为因变量因变量(dependent variable)(dependent variable),用用y y表示表示n用来预测或用来解释因变量的一个或多个变量称为用来预测或用来解释因变量的一个或多个变量称为自变量自变量(independent variable)(independent variable),用,用x x表示表示 3 3、因变量与自变量之间的关系用一个线性因变量与自变量之间的关系用一个线性方程来表示方程来表示线性回归的过程线性回归的过程 一元线性回归模型确定过程一元线性回归模型确定过程 一、做散点图一、做散点图(Graphs -Scatter-
10、Simple) 目的是为了以便进行简单地观测(如:目的是为了以便进行简单地观测(如: Salary与与Salbegin的关系的关系)。 二、建立方程二、建立方程 若散点图的趋势大概呈线性关系,可以建立线性方若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线性分布,可建立其它方程模型,并比较程,若不呈线性分布,可建立其它方程模型,并比较R2 (-1)来确定一种最佳方程式(曲线估计)。来确定一种最佳方程式(曲线估计)。 多元线性回归一般采用逐步回归方法多元线性回归一般采用逐步回归方法-Stepwise。( (一一) ) 一元线性回归模型一元线性回归模型(linear regression m
11、odel)(linear regression model)1、描述因变量描述因变量 y 如何依赖于自变量如何依赖于自变量 x 和和误差项误差项 的方程称为的方程称为回归模型回归模型2、一元线性一元线性回归模型可表示为回归模型可表示为 y = b b0 0 b b1 1 x 注:线性部分反映了由于注:线性部分反映了由于x x的变化而引起的的变化而引起的y y的变的变化;误差项化;误差项 反映了除反映了除x x和和y y之间的线性关系之之间的线性关系之外的随机因素对外的随机因素对y y的影响,它是不能由的影响,它是不能由x x和和y y之之间的线性关系所解释的变异性。间的线性关系所解释的变异性。
12、Y Y是是x x 的线性函数的线性函数( (部分部分) )加上误差项加上误差项b b0 0 和和 b b1 1 称为模称为模型的参数型的参数误差项误差项 是随机是随机变量变量一元线性回归模型(基本假定)一元线性回归模型(基本假定)1、因变量、因变量x与自变量与自变量y之间具有之间具有线性线性关系关系2、在重复抽样中,自变量、在重复抽样中,自变量x的取值的取值是固定的,即是固定的,即假定假定x是非随机的是非随机的3 、误差项、误差项 满足条件满足条件误差项误差项 满足条件满足条件l正态性正态性。 是是一个服从正态分布的随机变量,一个服从正态分布的随机变量,且期望值为且期望值为0,即,即 N(0
13、, 2 ) 。对于一个给定的。对于一个给定的 x 值,值,y 的期望值为的期望值为E(y)=b b0+ b b1xl方差齐性方差齐性。对于所有的。对于所有的 x 值,值, 的方差一个特定的方差一个特定的值,的方差也都等于的值,的方差也都等于 2 都相同。同样,一个特定都相同。同样,一个特定的的x 值,值, y 的方差也都等于的方差也都等于 2l独立性独立性。独立性意味着对于一个特定的。独立性意味着对于一个特定的 x 值,值,它所对应的它所对应的与其他与其他 x 值所对应的值所对应的不相关;对于一不相关;对于一个特定的个特定的 x 值,它所对应的值,它所对应的 y 值与其他值与其他 x 所对应的
14、所对应的 y 值也不相关值也不相关估计的回归方程估计的回归方程(estimated regression equation)1. 总体总体回归参数回归参数0和和1是未知的,必须利用样本数是未知的,必须利用样本数据去估计据去估计2. 用样本统计量用样本统计量 和和 代替回归方程中的未知参代替回归方程中的未知参数数0和和1 ,就得到了,就得到了估计的回归方程估计的回归方程3. 一元线性回归中估计的回归方程为一元线性回归中估计的回归方程为其中:其中: 是估计的回归直线在是估计的回归直线在 y 轴上的截距,轴上的截距, 是直线的是直线的斜率,它表示对于一个给定的斜率,它表示对于一个给定的 x 的值,的
15、值, 是是 y 的估计值,的估计值,也表示也表示 x 每变动一个单位时,每变动一个单位时, y 的平均变动值的平均变动值 xy 1b0b0by 1b1b0b(二)(二) 参数的最小二乘估计参数的最小二乘估计n德国科学家德国科学家Karl Gauss(17771855)提出用最提出用最小化图中垂直方向的误差平方和来估计参数小化图中垂直方向的误差平方和来估计参数 n使因变量的观察值与估计值之间的误差平方使因变量的观察值与估计值之间的误差平方和达到最小来求得和达到最小来求得 和和 的方法。即的方法。即0b1b最小niiiniixyyy121012)() (bb注:用最小二乘法拟合的直线来代表注:用最
16、小二乘法拟合的直线来代表x与与y之间的之间的关系与实际数据的误差比其他任何直线都小。关系与实际数据的误差比其他任何直线都小。Karl Gauss的最小化图的最小化图参数的最小二乘估计参数的最小二乘估计 ( 和 的计算公式)0b1b0b1b(三)(三) 回归直线的拟合优度回归直线的拟合优度一、变差一、变差1、因变量、因变量 y 的取值是不同的,的取值是不同的,y 取值的这种波动称为取值的这种波动称为变变差差。变差来源于两个方面。变差来源于两个方面n由于自变量由于自变量 x 的取值不同造成的的取值不同造成的n除除 x 以外的其他因素以外的其他因素(如如x对对y的非线性影响、测量误差等的非线性影响、
17、测量误差等)的影响的影响2、对一个具体的观测值来说,变差的大小可以通过该、对一个具体的观测值来说,变差的大小可以通过该实际观测值与其均值之差实际观测值与其均值之差 来表示来表示yy 误差分解图误差分解图y误差平方和的分解误差平方和的分解 ( (误差平方和的关系误差平方和的关系) ) 误差平方和的分解误差平方和的分解 ( (三个平方和的意义三个平方和的意义) )1、总平方和总平方和(SSTtotal sum of squares)n反映因变量的反映因变量的 n 个观察值与其均值的总误差个观察值与其均值的总误差2、回归平方和、回归平方和(SSRsum of squares of regressio
18、n)n反映自变量反映自变量 x 的变化对因变量的变化对因变量 y 取值变化的影响,取值变化的影响,或者说,是由于或者说,是由于 x 与与 y 之间的线性关系引起的之间的线性关系引起的 y 的取值变化,也称为可解释的平方和的取值变化,也称为可解释的平方和3、残差平方和、残差平方和(SSEsum of squares of error)n反映除反映除 x 以外的其他因素对以外的其他因素对 y 取值的影响,也称取值的影响,也称为不可解释的平方和或剩余平方和为不可解释的平方和或剩余平方和判定系数判定系数R2 (coefficient of determination) 回归平方和占总误差平方和的比例回
19、归平方和占总误差平方和的比例()()niiniiyyyySSTSSRR12122估计标准误差估计标准误差(standard error of estimate)1、实际观察值与回归估计值误差平方和的均方根、实际观察值与回归估计值误差平方和的均方根2、反映实际观察值在回归直线周围的分散状况、反映实际观察值在回归直线周围的分散状况3、对误差项、对误差项 的标准差的标准差 的估计,是在排除了的估计,是在排除了x对对y的的线性影响后,线性影响后,y随机波动大小的一个估计量随机波动大小的一个估计量4、反映用估计的回归方程预测、反映用估计的回归方程预测y时预测误差的大小时预测误差的大小 5、计算公式为(、
20、计算公式为(k为自变量个数)为自变量个数)()MSEknSSEknyysniiie1112(四)(四) 显著性检验显著性检验线性关系的检验线性关系的检验1、检验自变量与因变量之间的线性关系是否显、检验自变量与因变量之间的线性关系是否显著;著;2、将回归均方、将回归均方(MSR)同残差均方同残差均方(MSE)加以比较,加以比较,应用应用F检验来分析二者之间的差别是否显著检验来分析二者之间的差别是否显著回归均方(回归均方(MSR):回归平方和):回归平方和SSR除以相应的除以相应的自由度自由度(自变量的个数自变量的个数k) 残差均方(残差均方(MSE):残差平方和):残差平方和SSE除以相应的除以
21、相应的自由度自由度(n-k-1)线性关系的检验线性关系的检验 (检验的步骤检验的步骤) 1. 提出假设提出假设nH0:b b1=0 线性关系不显著线性关系不显著. 计算检验统计量计算检验统计量F) 1,1 () 1(1knFMSEMSRknSSESSRF3. 确定显著性水平确定显著性水平 ,并根据分子自由度,并根据分子自由度1和分母自和分母自由度由度n-2求统计量的求统计量的P值(一元)值(一元)4. 作出决策:若作出决策:若P ,拒绝拒绝H0。表明两个变量之间表明两个变量之间的线性关系显著的线性关系显著回归系数的检验和推断回归系数的检验和推断1. 检验检验 x 与与 y 之间是否具有线性关系
22、,或者说之间是否具有线性关系,或者说,检验自变量,检验自变量 x 对因变量对因变量 y 的影响是否显著的影响是否显著2. 理论基础是回归系数理论基础是回归系数 的抽样分布的抽样分布1b3. 在一元线性回归中,等价于线性关系的显著性在一元线性回归中,等价于线性关系的显著性检验检验4. 采用采用t检验检验回归系数的检验和推断回归系数的检验和推断(样本统计量样本统计量 的分布的分布)1. 是根据最小二乘法求出的样本统计量,它有自是根据最小二乘法求出的样本统计量,它有自己的分布己的分布2. 的分布具有如下性质的分布具有如下性质分布形式:正态分布分布形式:正态分布数学期望:数学期望:标准差:标准差:由于
23、由于 未知,需用其估计量未知,需用其估计量se来代替得到来代替得到 的估计的标的估计的标准差准差1b1b11)(bbE()21xxib()21xxssieb1b回归系数的检验和推断回归系数的检验和推断 (检验步骤检验步骤) 1. 提出假设提出假设nH0: b1 = 0 (没有线性关系没有线性关系) nH1: b1 0 (有线性关系有线性关系) 2. 计算检验的统计量计算检验的统计量3. 确定显著性水平确定显著性水平 ,计算出统计量的,计算出统计量的P值,并值,并做出决策做出决策Pliner 打开线性回归分析对话框;打开线性回归分析对话框;n步骤二:选择被解释变量和解释变量。其中因步骤二:选择被
24、解释变量和解释变量。其中因变量列表框中为被解释变量,自变量为回归分变量列表框中为被解释变量,自变量为回归分析解释变量。析解释变量。n注:要对不同的自变量采用不同引入方法时,注:要对不同的自变量采用不同引入方法时,选选NEXT按钮把自变量归入不同自变量块中。按钮把自变量归入不同自变量块中。n第三步:选择个案标签。在变量列表中选择变第三步:选择个案标签。在变量列表中选择变量至个案标签中,而被选择的变量的标签用于量至个案标签中,而被选择的变量的标签用于在图形中标注点的值。在图形中标注点的值。n第四步:选择加权二乘法(第四步:选择加权二乘法(WLS)。在变量列)。在变量列表框中选择变量至表框中选择变量
25、至WLS中。但是该选项仅在被中。但是该选项仅在被选变量为权变量时选择。选变量为权变量时选择。n第五步:如果点击第五步:如果点击OK,可以执行线性回归分析,可以执行线性回归分析操作。操作。Method选项Enter:强迫引入法,默认选项。全部被选变量一次性进:强迫引入法,默认选项。全部被选变量一次性进入回归模型。入回归模型。Stepwise:强迫剔除法。每一次引入变量时,概率:强迫剔除法。每一次引入变量时,概率F最小最小值的变量将引入回归方程,如果已引入回归方程的变量值的变量将引入回归方程,如果已引入回归方程的变量的的F大于设定值,将被剔除回归方程。当无变量被引入大于设定值,将被剔除回归方程。当
26、无变量被引入或剔除,时终止回归方程或剔除,时终止回归方程Remove:剔除变量。不进入方程模型的被选变量剔除。:剔除变量。不进入方程模型的被选变量剔除。Backward:向后消去:向后消去Forward:向前引入:向前引入Rule选项n选择一个用于指定分析个案的选择规则的变量。选择一个用于指定分析个案的选择规则的变量。选择规则包括:选择规则包括:等于、不等于、大于、小于、大于或等于、小于等于、不等于、大于、小于、大于或等于、小于或等于。或等于。Value中输入相应变量的设定规则的临界值中输入相应变量的设定规则的临界值。Statistics 选项回归系数框回归系数框估计值:显示回估计值:显示回归
27、系数的估计值归系数的估计值、回归系数的、回归系数的标准差、标准化标准差、标准化回归系数、回归回归系数、回归系数的系数的的的t t估估计值和双尾显著计值和双尾显著性水平。性水平。置信区间置信区间协方差矩阵协方差矩阵模型拟合:复相关模型拟合:复相关系数、判定系数、系数、判定系数、调整调整R R2 2、估计值的标估计值的标准误及方差分析准误及方差分析R R2 2改变量:增加或删改变量:增加或删除一个自变量产生除一个自变量产生的改变量的改变量描述性统计量:变描述性统计量:变量的均数、标准差、量的均数、标准差、相关系数矩阵、单相关系数矩阵、单尾检验尾检验部分及偏相关系数:部分及偏相关系数:显示零阶相关、
28、偏显示零阶相关、偏相关、部分相关系相关、部分相关系数数共线性诊断:显示共线性诊断:显示变量容差、方差膨变量容差、方差膨胀因子和共线性的胀因子和共线性的诊断表诊断表残差统计量残差统计量D-WD-W检验统计量:显示残差相关的检验统计量:显示残差相关的D-WD-W检验和残差与预测值的综述统计。检验和残差与预测值的综述统计。个案诊断:个案诊断:1 1、超过、超过n n倍标准差以上的个案为奇异值;倍标准差以上的个案为奇异值;2 2、显示所有变量的标准化、显示所有变量的标准化残差、观测值和预测值、残差残差、观测值和预测值、残差Plots选项选项该对话框可以分析资料的正态性、线性和方差齐性,还该对话框可以分
29、析资料的正态性、线性和方差齐性,还可以检测奇异值或异常值等。可以检测奇异值或异常值等。1 1、因变量、因变量2 2、标准化预测值、标准化预测值3 3、标准化残差、标准化残差4 4、删除残差、删除残差5 5、调整预测值、调整预测值6 6、StudentStudent残差残差7 7、StudentStudent删除残差删除残差HistogramHistogram:标准化残差的直方图,并给出正态曲线。:标准化残差的直方图,并给出正态曲线。Normal probalityNormal probality plot plot:标准化残差的正态概率图:标准化残差的正态概率图Produce all part
30、ial plotsProduce all partial plots:产生所有偏残差图,生成每个自变量残差与因变:产生所有偏残差图,生成每个自变量残差与因变量残差的散点图。量残差的散点图。Save对话框预测值预测值包括非标准化的预测值、包括非标准化的预测值、标准化的预测值、调整标准化的预测值、调整预测值、预测值均数标预测值、预测值均数标准误准误距离距离包括自变量个案值与所包括自变量个案值与所有个案平均值距离、一有个案平均值距离、一个个案参与计算回归线个个案参与计算回归线系数时,所有个案残差系数时,所有个案残差变化的大小。变化的大小。杠杆值杠杆值残差残差非标准化残差非标准化残差标准化残差标准化残
31、差StudentStudent残差残差删除残差删除残差StudentStudent删除残差删除残差影响统计量影响统计量DFBetaDFBeta值,删除一个个值,删除一个个案后回归系数改变的大案后回归系数改变的大小。小。标准化标准化DfBetaDfBetaDfFitDfFit值,拟合值之差值,拟合值之差标准化标准化DfFit协方差矩阵的比率协方差矩阵的比率预测区间预测区间平均预测区间平均预测区间个体预测区间个体预测区间Options选项逐步回归方法准则逐步回归方法准则使用使用F F显著水平值显著水平值EntryEntry:当候选变量中最大:当候选变量中最大F F值概值概率小于等于引入值时,引入相
32、应率小于等于引入值时,引入相应变量。变量。Removal:Removal:剔除相应变量剔除相应变量实例分析例:某单位对8名女工进行体检,体检项目包括体重和肺活量,数据如下: 利用回归分析描述其关系。体重4242464646505050肺活量2.552.22.752.42.82.813.413.1结果分析结果分析n描述性统计量相关系数相关系数n表中表中Pearson相关系数为相关系数为0.613,单尾显著性检,单尾显著性检验的概率验的概率p值为值为0.000,小于,小于0.05.所以体重和肺所以体重和肺活量之间具有活量之间具有较强的相关性较强的相关性引入或剔除变量表引入或剔除变量表n表中显示回归
33、分析的方法以及变量被剔除或引表中显示回归分析的方法以及变量被剔除或引入的信息。入的信息。Method项为项为Enter,表明显示回归,表明显示回归方法用得是强迫引入法引入变量。这里自变量方法用得是强迫引入法引入变量。这里自变量只有一个,所以此表意义不大。只有一个,所以此表意义不大。模型摘要模型摘要n两变量相关系数为两变量相关系数为0.6130.613,判定系数为,判定系数为0.3750.375,调整判定系数为调整判定系数为0.3520.352,估计值的标准误差为,估计值的标准误差为360.997360.997方差分析表方差分析表n该表为回归分析的方差分析表。可以看出回归的均方为该表为回归分析的
34、方差分析表。可以看出回归的均方为2115016.2032115016.203,剩余的均方为,剩余的均方为130318.685130318.685,F F检验统计量检验统计量的观察值为的观察值为16.23016.230,p p值为值为0.0000.000小于小于0.050.05,可以认为体,可以认为体重和肺活量之间存在线性关系。重和肺活量之间存在线性关系。回归系数n下表给出了回归方程中的参数和常数项的估计下表给出了回归方程中的参数和常数项的估计值。其中常数项系数为值。其中常数项系数为405.819,回归系数为,回归系数为47.835,线性回归参数的标准误差为,线性回归参数的标准误差为11.874
35、,标准化回归系数为标准化回归系数为0.613,回归系数,回归系数t检验的检验的t统统计量观察值为计量观察值为4.029,t检验的检验的p值为值为0.00,小于,小于0.05可以认为回归系数有显著意义可以认为回归系数有显著意义回归诊断回归诊断n下表对全部的观察单位进行回归诊断,结果表明,下表对全部的观察单位进行回归诊断,结果表明,每一例的标准化残差、因变量观测值和预测值以每一例的标准化残差、因变量观测值和预测值以及残差及残差残差统计量残差统计量n表中显示了预测值、标准化预测值、残差、标准表中显示了预测值、标准化预测值、残差、标准化残差等统计量的最小值、最大值、均数、标准化残差等统计量的最小值、最
36、大值、均数、标准差差回归标准化残差的直方图回归标准化残差的直方图n在回归标准化在回归标准化残差的直方图残差的直方图中,正态曲线中,正态曲线也被显示,用也被显示,用来判断标准化来判断标准化残差是否呈正残差是否呈正态分布态分布回归标准化的正态回归标准化的正态P-P图图n图中给出了观图中给出了观察值的残差分察值的残差分布与假设的正布与假设的正态分布比较,态分布比较,如果标准化残如果标准化残差呈正态分布,差呈正态分布,则标准化残差则标准化残差点应该分布在点应该分布在直线上或靠近直线上或靠近直线直线因变量与回归标准化预因变量与回归标准化预测值的散点图测值的散点图n其中横坐标其中横坐标变量为标准变量为标准
37、化预测值化预测值数据编辑窗口新增变量数据编辑窗口新增变量n从表中可以看到非标准化预测值,非标准化残从表中可以看到非标准化预测值,非标准化残差,预测值均数的标准误差,均值的预测区间、差,预测值均数的标准误差,均值的预测区间、个体预测区间。个体预测区间。n在十九世纪四、五十年代,苏格兰物理学在十九世纪四、五十年代,苏格兰物理学家家James D.ForbesJames D.Forbes,试图通过水的沸点来,试图通过水的沸点来估计海拔高度。由于可以通过气压来估计估计海拔高度。由于可以通过气压来估计海拔,他在阿尔卑斯山以及苏格兰收集了海拔,他在阿尔卑斯山以及苏格兰收集了沸点及海拔的数据如表所示。现在通
38、过线沸点及海拔的数据如表所示。现在通过线形回归拟合气压与沸点的关系。形回归拟合气压与沸点的关系。 散点图散点图n执行【Analyze】/【Regression】/【Linear】命令,弹出【Linear】对话框 程序程序n结果解读结果解读n模型拟合度检验n方差分析表n回归分析结果对残差统计量的分析对残差统计量的分析n数据中无离群值,且数据的标准差比较小,数据中无离群值,且数据的标准差比较小,可以认为模型是健康的。可以认为模型是健康的。n残差统计量检验多元线性回归的例子多元线性回归的例子n某大型金融机构中做了一项关于雇员对其主管满意度的调查,某大型金融机构中做了一项关于雇员对其主管满意度的调查,
39、其中一个问题设计为对主管的工作业绩的综合评价,另外若其中一个问题设计为对主管的工作业绩的综合评价,另外若干个问题涉及主管与其雇员间相互关系的具体方面。该研究干个问题涉及主管与其雇员间相互关系的具体方面。该研究试图解释主管性格与雇员对其整体满意度之间的关系。试图解释主管性格与雇员对其整体满意度之间的关系。n雇员对其主管满意度的调查模型拟合度检验模型拟合度检验方差分析方差分析回归分析结果回归分析结果n拟合结果为:Y=A*X1+B*X2+C*X3+D ?n结果解读 剔除变量列表n共线性检验指标n共线性检验结果第四部分第四部分 曲线估计曲线估计n基本原理基本原理 两变量之间的关系并不总是以线性形式表两
40、变量之间的关系并不总是以线性形式表现出来的,更多的时候呈现出非线性关系,利现出来的,更多的时候呈现出非线性关系,利用图形可表示为曲线。用图形可表示为曲线。 对非线性关系无法直接通过建立线性回归对非线性关系无法直接通过建立线性回归模型解决。虽然如此。但仍然存在一些非线性模型解决。虽然如此。但仍然存在一些非线性关系可以通过变量变换化成线性关系,并最终关系可以通过变量变换化成线性关系,并最终形成变换后的线性模型。形成变换后的线性模型。SPSS过程n第一步:录入数据,选择分析菜单中的第一步:录入数据,选择分析菜单中的Regression=liner 打开线性曲线估计对话框。打开线性曲线估计对话框。n第
41、二步:选择被解释变量和解释变量第二步:选择被解释变量和解释变量n第三步:选择曲线估计模型第三步:选择曲线估计模型Linear:拟合直线方程,实际上与Linear过程的二元直线回归相同;Quadratic:拟合二次方程Y = b0+b1t+b2t2;Compound:拟合复合曲线模型Y =b0X ( b1 )t ;Growth:拟合等比级数曲线模型Y = exp(b0+b1t);Logarithmic:拟合对数方程Y = b0+b1lnt;Cubic:拟合三次方程Y = b0+b1t+b2t2+b3t3;S:拟合S形曲线Y = exp(b0+b1/t);Exponential:拟合指数方程Y = b0 exp(b1t);Inverse:数据按Y =b0+b1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眩晕护理查房中医治疗
- 物业公司管理规章制度
- 停工大检修静设备及工业管道施工组织设计
- 胆石症的微创治疗
- 绿道规划修编
- 安徽省-2023年-社区网格员-上半年笔试真题卷
- 社会实践活动班任总结
- 主办会计的主要职责模版(3篇)
- 2024年文明美德伴我行演讲稿(2篇)
- 2024年全体办公室人员会议上的讲话例文(6篇)
- 心衰合并胸腔积液的护理Ppt
- 廉洁风险防控手册(医院)
- 酒精戒断综合征护理查房课件
- 中国古代陶瓷鉴赏
- 计算机应用与人工智能基础项目9 人工智能
- 编译原理考试题及答案汇总
- 人教版九年级化学上册第六单元课题3-二氧化碳和一氧化碳说课稿
- 中国成人患者肠外肠内营养临床应用指南(2023版)
- 物业管理应急响应能力提升及案例分析
- 水产养殖学专业大学生职业生涯规划书
- 森林防火应对工作预案
评论
0/150
提交评论