机械手的设计毕业论文资料_第1页
机械手的设计毕业论文资料_第2页
机械手的设计毕业论文资料_第3页
机械手的设计毕业论文资料_第4页
机械手的设计毕业论文资料_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中国石油大学(华东)现代远程教育毕业设计(论文)题 目:机械手的设计学习中心:山东莱阳学习中心年级专业:姓 名:孙照源 学号:指导教师:职称:导师单位:莱阳市职业中等专业学校中国石油大学(华东)远程与继续教育学院论文完成时间:20n年08月30日摘要3第一章前言1.1机械手概述4L 2机械手的组成和分类41.1 .1机械手的组成41.2 . 2机械手的分类6第二章机械手的设计方案2.1机械手的坐标型式与自由度 82. 2机械手的手部结构方案设计 82. 3机械手的手腕结构方案设计 92. 4机械手的手臂结构方案设计92. 5机械手的驱动方案设计92. 6机械手的控制方案设计92. 7机械手的主

2、要参数92. 8机械手的技术参数列表9第三章手部结构设计3.1夹持式手部结构 113. 1.1手指的形状和分类113. 1.2设计时考虑的儿个问题113. 1.3手部夹紧气缸的设计11第四章手腕结构设计4.1手腕的自由度154. 2手腕的驱动力矩的计算 154. 2. 1手腕转动时所需的驱动力矩 154. 2. 2回转气缸的驱动力矩计算15第五章手臂伸缩,升降,回转气缸的设计与校核5. 1手臂伸缩部分尺寸设计与校核195. 1.1尺寸设计 195. 1.2尺寸校核195 . 1 .3导向装置195 .1 .4平衡装置205. 2手臂升降部分尺寸设计与校核205. 2.1尺寸设计205. 2.

3、2尺寸校核205. 3手臂回转部分尺寸设计与校核211. 3. 1尺寸设计215. 3. 2尺寸校核21第六章机械手的PLC控制设计226.1可编程序控制器的选择及工作过程 226. 1. 1可编程序控制器的选择226.1 . 2可编程序控制器的工作过程226.2 可编程序控制器的使用步骤 23第七章结论 参考文献242526致谢1在设计机械手臂座的时候,用两个电机提供动力。左边一电机通过谐波减速 器减速后,通过齿轮来控制手臂的回转,而手臂弯曲动作的动力,山右边一电机 提供。电机2同样也是通过谐波减速器减速后,通过一个长轴,把动力传到底部 的小齿轮上,再由小齿轮与大齿轮的啮合,把动力传到那竖直

4、的锥齿轮上,乂通 过锥齿轮之间的啮合,把动力与运动传递到横轴上,这样,再通过键连接,就能 把动力传到那带轮上。这样,带轮就以一定的速度不停的转,以给臂关节通过同 步齿型带传递动力。在设计臂关节结构时,我们用两个同步齿形带轮来传递动力,而带轮乂与轴 和机械式离合器的左半边相连,这样,就使轴与左半边相连的离合器转动。在右 半边为一电磁制动器,制动器的左半边与离合器的右半边相连,而且通过盘与上 臂相连。这时,当电磁铁通电时,制动器吸合,这时离合器也分开。这样,上臂 就停止在所要求的位置上了。当电磁铁失电时,由于弹簧力的作用,把制动器推 开,同时离合器在弹簧力的作用下自动啮合,手臂恢复原有的运动。注:

5、机械手臂的运动范围于其结构的限制,在手臂的运动到达结构位置之前,必 须使其自动停止。机械手臂的运动机械位置是有关节处牙嵌离合齿上的突起部分 而定。手臂在极限位置自动停止,反向运行的条件完全是靠离合齿上的凸起部分 与滑块的接触实现的。为了使离合齿轮能顺利的脱开和啮合,对离合齿上的凸起 部分斜面的升角B Narctg u v。只有满足这个条件,离合齿上凸起部分的斜面 与滑块在滑动时才不会发生自锁。这样手臂才能自动停止和反向动作! 方案二此方案在臂关节的结构设计上与方案一有所不同。这里设计成中心轴不转 动。改在同步带轮处装两个轴承。这样,带轮可自由转动,而不会影响轴,且把 离合器的左半边加工在带轮上

6、,这样,不仅可以缩小空间,而且可以提高强度。 其余与方案一相同。关键词:机械手臂;极限位置;啮合;第一章前言1.1 .工业机械手概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置 构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作 业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。 它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新 换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、 信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研 究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工

7、业自动 化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合 了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快 速反应和分析判断能力,乂有机器可长时间持续工作、精确度高、抗恶劣环 境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产 业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设 备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、 搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械 手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻 劳动强度、保证产品质量、实现安全生产;尤其

8、在高温、高压、低温、低压、 粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作, 意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、 喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的 结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属 于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控 制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机 械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断 变换生产品种的中小批量生产中获得广泛的引用。1.2 ,机械手的组成和分类1.2. 1.机械手

9、的组成机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。 各系统相互之间的关系如方框图2-1所示。控制系统驱动系统一执行机构*位置检测装置_机械手组成方框图:卜1 (一)执行机构包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。1、手部:即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸 附式手在本课题中我们采用夹持式手部结构。夹持式手部由手指(或手爪)和 传力机构所构成。手指是与物件直接接触的构件,常用的手指运动形式有回 转型和平移型。回转型手指结构简单,制造容易,故应用较广泛。平移型应 用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径 变化

10、不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。手指结构 取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及 尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指 数有双指式、多指式和双手双指式等。而传力机构则通过手指产生夹紧力来 完成夹放物件的任务。传力机构型式较多时常用的有:滑槽杠杆式、连杆杠 杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。2、手腕:是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势) 3、手臂:手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是带动手指 去抓取物件,并按预定要求将其搬运到指定的位置.工业机械手

11、的手臂通常由驱 动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮 机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。 4、立柱:立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动 和升降(或俯仰)运动均与立柱有密切的联系。机械手的立I因工作需要,有时 也可作横向移动,即称为可移式立柱。5、行走机构:当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座 上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运 动。滚轮式布为有轨的和无轨的两种。驱动滚轮运动则应另外增设机械传动装置。6、机座:机座是机械手的基础部分,机械

12、手执行机构的各部件和驱动系统均安装 于机座上,故起支撑和连接的作用。(二)驱动系统驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助 装置组成。常用的驱动系统有液压传动、气压传动、机械传动。控制系统是支 配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程 序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和射流 控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间), 同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监 视,当动作有错误或发生故障时即发出报警信号。(二)控

13、制系统控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械 手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。 控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动, 并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时 间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的 动作进行监视,当动作有错误或发生故障时即发出报警信号。1.2.2 .机械手的分类工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类 标准,在此暂按使用范围、驱动方式和控制系统等进行分类。(一)按用途分机械手可分为专用机械手和通用机械手两种:1、

14、专用机械手它是附属于主机的、具有固定程序而无独立控制系统的机械装置。专用 机械手具有动作少、工作对象单一、结构简单、使用可靠和造价低等特点, 适用于大批量的自动化生产的自动换刀机械手,如自动机床、自动线的上、 下料机械手和加工中心。2、通用机械手它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。 在性能范围内,其动作程序是可变的,通过调整可在不同场合使用,驱动系 统和控制系统是独立的。通用机械手的工作范围大、定位精度高、通用性强, 适用于不断变换生产品种的中小批量自动化的生产。通用机械手按其控制定 位的方式不同可分为简易型和伺服型两种:简易型以“开一关”式控制定位, 只能是点位控制

15、,伺服型可以是点位的,也可以实现连续控制,伺服型具有 伺服系统定位控制系统,一般的伺服型通用机械手属于数控类型。(二)按驱动方式分1、液压传动机械手是以液压的压力来驱动执行机构运动的机械手。其主要特点是:抓重可 达几百公斤以上、传动平稳、结构紧凑、动作灵敏。但对密封装置要求严格, 不然油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工 作。若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通 用性扩大,但是电液伺服阀的制造精度高,油液过滤要求严格,成本高。2、气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:介 质李源极为方便,输出力小,气动动作迅

16、速,结构简单,成本低。但是,由 于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力 较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大, 所以适用于高速、轻载、高温和粉尘大的环境中进行工作。3、机械传动机械手即由机械传动机构(如凸轮、连杆、齿轮和齿条、间歇机构等)驱动的机 械手。它是一种附属于工作主机的专用机械手,其动力是由工作机械传递的。 它的主要特点是运动准确可靠,用于工作主机的上、下料。动作频率大,但 结构较大,动作程序不可变。4、电力传动机械手即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行机 构运动的械手,因为不需要中间的转换机构,故机械

17、结构简单。其中直线电 机机械手的运动速度快和行程长,维护和使用方便。此类机械手目前还不多, 但有发展前途。(三)按控制方式分1、点位控制它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位 置,不能控制其运动轨迹。若欲控制的点数多,则必然增加电气控制系统的 复杂性。目前使用的专用和通用工业机械手均属于此类。2、连续轨迹控制它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个 移动过程处于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气 控制系统复杂。这类工业机械手一般采用小型计算机进行控制。第二章机械手的设计方案对气动机械手的基本要求是能快速、准确地拾-放和搬运物件

18、,这就要求它 们具有高精度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及 在任意位置都能自动定位等特性。设计气动机械手的原则是:充分分析作业对象 (工件)的作业技术要求,拟定最合理的作业工序和工艺,并满足系统功能要求和 环境条件;明确工件的结构形状和材料特性,定位精度要求,抓取、搬运时的受 力特性、尺寸和质量参数等,从而进一步确定对机械手结构及运行控制的要求; 尽量选用定型的标准组件,简化设计制造过程,兼顾通用性和专用性,并能实现 柔性转换和编程控制.本次设计的机械手是通用气动上下料机械手,是一种适合 于成批或中、小批生产的、可以改变动作程序的自动搬运或操作设备,劳动强度 大和操作

19、单调频繁的生产场合。也可用于操作环境恶劣的生产场合。2.1.机械手的坐标型式与自由度按机械手手臂的不同运动形式及其组合情况,其坐标型式可分为直角坐标 式、圆柱坐标式、球坐标式和关节式。由于本机械手在上下料时手臂具有升降、 收缩及回转运动,因此,采用圆柱座标型式。相应的机械手具有三个自由度,为 了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆 动的自由度图2-1机械手的运动示意图2. 2 .机械手的手部结构方案设计为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当 工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。2. 3 .机械手的手腕结构方

20、案设计考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须 设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转 运动的机构为回转气缸。2.4 .机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左 右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱 的横向移动即为手臂的横移。手臂的各种运动由气缸来实现。2. 5 .机械手的驱动方案设计由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低 廉因此本机械手采用气压传动方式。3. 6 .机械手的控制方案设计考虑到机械手的通用性,同时使用点位控制,因此我

21、们采用可编程序控制 器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即 可实现,非常方便快捷。4. 7 .机械手的主要参数1 .机械手的最大抓重是其规格的主参数,由于是采用气动方式驱动,因此考虑 抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际 情况,本设计设计抓取的工件质量为5公斤2.基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了 要求,设计速度过低限制了它的使用范围。而影响机械手动作快慢的主要因 素是手臂伸缩及回转的速度。该机械手最大移动速度设计为lQ/s。最大回 转速度设计为90。/s。平均移动速度为0.8"s。平

22、均回转速度为60。/$。机 械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明 速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快 慢更为符合速度特性。除了运动速度以外,手臂设计的基本参数还有伸缩行 程和工作半径。大部分机械手设计成相当于人工坐着或站着且略有走动操作 的空间。过大的伸缩行程和匚作半径,必然带来偏重力矩增大而刚性降低。 在这种情况下宜采用自动传送装置为好。根据统计和比较,该机械手手臂的 伸缩行程定为600mm,最大工作半径约为1400。手臂升降行程定为120"。 定位精度也是基本参数之一。该机械手的定位精度为±1。2. 8.机械

23、手的技术参数列表一、用途:用于自动输送线的上下料。二、设计技术参数:1、抓重:5kg2、自由度数:4个自由度3、坐标型式:圆柱坐标4、最大工作半径半400卯九5、手臂最大中心高:1250?6、手臂运动参数:伸缩行程1200nm伸缩速度400 / s升降行程120升降速度25。/s回转范围0°-180°回转速度90°/s7、手腕运动参数:回转范围0° -180s回转速度90,/s8、手指夹持范围:棒料:- 50mm9、定位方式:行程开关或可调机械挡块等10定位精度:±1"11、驱动方式:气压传动12、控制方式:机械手臂剖视图图2-6第三

24、章手部结构设计为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当 工件是棒料时,使用夹持式手部:如果有实际需要,还可以换成气压吸盘式结 构,3. 1夹持式手部结构夹持式手部结构由手指(或手爪)和传力机构所组成。其传力结构形式比较 多,如滑槽杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。3. 1. 1手指的形状和分类夹持式是最常见的一种,其中常用的有两指式、多指式和双手双指式:按 手指夹持工件的部位乂可分为内卡式(或内涨式)和外夹式两种:按模仿人手手 指的动作,手指可分为一支点回转型,二支点回转型和移动型(或称直进型), 其中以二支点回转型为基本型式。当二支点回转型手指的两个回转支

25、点的距离 缩小到无穷小时,就变成了一支点回转型手指;同理,当二支点回转型手指的 手指长度变成无穷长时,就成为移动型。回转型手指开闭角较小,结构简单, 制造容易,应用广泛。移动型应用较少,其结构比较复杂庞大,当移动型手指 夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。3. 1.2设计时考虑的几个问题(一)具有足够的握力(即夹紧力)在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中 所产生的惯性力和振动,以保证工件不致产生松动或脱落。(二)手指间应具有一定的开闭角两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。手指的开 闭角应保证工件能顺利进入或脱开,若夹持

26、不同直径的工件,应按最大直径的工 件考虑。对于移动型手指只有开闭幅度的要求。(三)保证工件准确定位为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状, 选择相应的手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。 (四)具有足够的强度和刚度手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的 惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量 使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭 转力矩最小为佳。(五)考虑被抓取对象的要求根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点两 指回转型,

27、由于工件多为圆柱形,故手指形状设计成V型,其结构如附图所示。3.1. 3手部夹紧气缸的设计1、手部驱动力计算本课题气动机械手的手部结构如图3-2所示,1图3-2齿轮齿条式手部其工件重量G=5公斤,V形手指的角度28 = 120°, b = 120mm > R = 24mm,摩擦系数为/=0.10(1)根据手部结构的传动示意图,其驱动力为:2bp = N R根据手指夹持工件的方位,可得握力计算公式:N = 0.5fg(。一 °)= 0.5x5x(60c -5。42 )=25(N)所以 =N =245(N)实际驱动力:实际NI,因为传力机构为齿轮齿条传动,故取77 = 0

28、.94,并取储=1.5。若被抓取工件的最大加速度取a = 3g时,则:K)=l + " = 4 g1 5x4所以实除=245x - = 1563(N)所以夹持工件时所需夹紧气缸的驱动力为1563N。2、气缸的直径本气缸属于单向作用气缸。根据力平衡原理,单向作用气缸活塞杆上的输出 推力必须克服弹簧的反作用力和活塞杆工作时的总阻力,其公式为:式中:F1 -活塞杆上的推力,NF,-弹簧反作用力,XFz-气缸工作时的总阻力,XP-气缸工作压力,Pa弹簧反作用按下式计算:£ =G/(l + s)_G&4GJ.4G- 80*式中:一弹簧刚度,N/m1-弹簧预压缩量,m5-活塞行

29、程,mdr弹簧钢丝直径,mD-弹簧平均直径,.-弹簧有效圈数.G-弹簧材料剪切模量,一般取G = 79.4x109尸“在设计中,必须考虑负教率的影响,则:由以上分析得单向作用气缸的直径:D= 刃"7代入有关数据,可得= 4 = 79.4x10“ x (3 5x10-')48。看8x(30x10-3)3x15= 3677.46(N/)£ =G,(l + s)=3677.46 x 60 xW3=220.6(N)所以:£> =114x(490+220?6)i x0.5xl06=65.23()查有关手册圆整,得。=65由 dD = 0.2-0.3,可得活塞杆

30、直径:d = (0.2 -0.3)0 = 13 -19.5mm 圆整后,取活塞杆直径6/ = 18校核,按公式/伏74d2)4 b有:dN(4尸l/bD05其中,。=120Mpm 5=750N则:"2(4x490/rxl20)°s=2.28<18满足实际设计要求。3,缸筒壁厚的设计缸筒直接承受压缩空气压力,必须有一定厚度。一般气缸缸筒壁厚与内径之 比小于或等于1/10,其壁厚可按薄壁筒公式计算: = DPp/2a式中:6-缸筒壁厚,mmD气缸内径,mmPp-实验压力,取Pp=L5P, Pa材料为:ZL3, O=3MPa代入己知数据,则壁厚为: = DPp/2a= 65

31、x6xl05 /(2x3xl06)=6.5()取 6 = 7.5mm,则缸筒外径为:O1=65 + 7.5 x 2 = 80()1第四章手腕结构设计考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须 设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回 转运动的机构为回转气缸。4.1手腕的自由度手腕是连接手部和手臂的部件,它的作用是调整或改变工件的方位,因而 它具有独立的自由度,以使机械手适应复杂的动作要求。手腕自由度的选用与 机械手的通用性、加工工艺要求、工件放置方位和定位精度等许多因素有关。 由于本机械手抓取的工件是水平放置,同时考虑到通用性,因此给手腕设一绕

32、 x轴转动回转运动才可满足工作的要求目前实现手腕回转运动的机构,应用最 多的为回转油(气)缸,因此我们选用回转气缸。它的结构紧凑,但回转角度小于360。,并且要求严格的密封。4. 2手腕的驱动力矩的计算4. 2. 1手腕转动时所需的驱动力矩手腕的回转、上下和左右摆动均为回转运动,驱动手腕回转时的驱动力矩必须 克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动 片与缸径、定片、端盖等处密封装置的摩擦阻力矩以及由于转动件的中心与转动 轴线不重合所产生的偏重力矩.图4-1所示为手腕受力的示意图。1.工件2.手部3.手腕图4-1手碗回转时受力状态手腕转动时所需的驱动力矩可按下式计算

33、:M亮=A/惯+ M偏+ M摩+ M时式中:驱动手腕转动的驱动力矩(N-C7);M惯-惯性力矩(N-cw);M侑-参与转动的零部件的重量(包括工件、手部、手腕回转缸的动片) 对转动轴线所产生的偏重力矩,; M时-手腕回转缸的动片与定片、缸径、端盖等处密封装置的摩擦阻力矩(N °九);下面以图4-1所示的手腕受力情况,分析各阻力矩的计算:1、手腕加速运动时所产生的惯性力矩M悦若手腕起动过程按等加速运动,手腕转动时的角速度为。,起动过程所用的 时间为4,则:式中:参与手腕转动的部件对转动轴线的转动惯量(N.c?.);Jr工件对手腕转动轴线的转动惯量(Me"?/)'。若工

34、件中心与转动轴线不重合,其转动惯量4为:J = + e g式中:J-工件对过重心轴线的转动惯量(Mem./):G-工件的重量();q -工件的重心到转动轴线的偏心距(cm),3 -手腕转动时的角速度(弧度/s);Ar-起动过程所需的时间(s);夕一起动过程所转过的角度(弧度)。2、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩M偏M 佑=Gxex + G3e3 (N - cm)式中:Gj-手腕转动件的重量(N);Q-手腕转动件的重心到转动轴线的偏心距(cm)当工件的重心与手腕转动轴线重合时,则G©=0.3、手腕转动轴在轴颈处的摩擦阻力矩"口“封=y(7?./2 +) (N

35、 cm)式中:4 , 4,-转动轴的轴颈直径(cm);/-摩擦系数,对于滚动轴承/=0.01,对于滑动轴承/ = 0.1;R八,%一处的支承反力(N),可按手腕转动轴的受力分析求解.,根据汇心工)=0,得:RJ + G.L = G.l. +GJR _ G"i +G/2 -63/38/同理,根据ZMs(F)=O,得:_ Gt(l + 11) + G2(l +/2) + G3(/-/3)Ra= 1式中:G?-的重量(N)/",4,一如图4-1所示的长度尺寸(cm).4、转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密 衬装置的类型有关,应根据具体情况加以分析

36、。4. 2. 2回转气缸的驱动力矩计算在机械手的手腕回转运动中所采用的回转缸是单叶片回转气缸,它的原理 如图4-2所示,定片I与缸体2固连,动片书与回转轴5固连。动片封圈4把气腔分 隔成两个当压缩气体从孔a进入时,推动输出轴作逆时4回转,则低压腔的气从 b孔排出。反之,输出轴作顺时针方向回转。单叶气缸的压力P驱动力矩M的关系 为:pb(R2-r2)f 2MM =, 或p = ;2b(R-r2)109 4-2回转气缸的图Fig. 4-2 Sketch of Rotating Gas Vat式中:M回转气缸的驱动力矩(Ncm);P回转气缸的工作压力(N,cm);R缸体内型半径(cm):r输出轴半径

37、(cm);b动片宽度(cm).上述驱动力矩和压力的关系式是对于低压腔背压为零的情况下而言的若低 压腔有一定的背压,则上式中的P应代以工作压力P1与背压P?之差.-24-第五章手臂伸缩、升降、回转气缸的尺寸设计与校核5. 1手臂伸缩气缸的尺寸设计与校核5.1.1手臂伸缩气缸的尺寸设计手臂伸缩气缸采用标准气缸,参看各种型号的结构特点,尺寸参数,结合本设计的实际要求,气缸用CTA型气缸,尺寸系列初选内径为。100/63:5. 1.2尺寸校核1 .在校核尺寸时,只需校核气缸内径。尸63mm,半径R=3L 5mm的气缸的尺寸满足使用要求即可,设计使用压强,= 0.4"P, 则驱动力:F = P

38、成 2= 0.4x106x3.14x0.03152= 1246(N)测定手腕质量为50kg,设计加速度a = 10("s),则惯性力F = ma= 50x10= 500 (TV)2 .考虑活塞等的摩擦力,设定摩擦系数 =0.2,%"= 0.2x500= 100(N)总受力尸。=耳+乙= 500 +100= 600(%)F°<F所以标准CTA气缸的尺寸符合实际使用驱动力要求要求。5. 1.3.导向装置气压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以保 证手指的正确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性, 在设计手臂结构时,应该采

39、用导向装置。具体的安装形式应该根据本设计的具体结构和抓取物 体重量等因素来确定,同时在结构设计和布局上应该尽量减少运动部件的重量 和减少对回转中心的惯量。导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才 用单导向杆来增加手臂的刚性和导向性。5.1.4平衡装置在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧 重力矩对性能的影响,故在手臂伸缩气缸一侧加装平衡装置,装置内加放硅码, 硅码块的质量根据抓取物体的重量和气缸的运行参数视具体情况加以调节,务求 使两端尽量接近平衡。5.2手臂升降气缸的尺寸设计与校核5. 2. 1尺寸设计气缸运行长度设计为/二118mm

40、,气缸内径为。=110mm,半径R=55mm,气缸运行速度,加速度时间ALO. 1s,压强p=0. 4MPa,则驱动力G()= p.TrR2= 0.4x106x3.14x0.0552=3799(/V)5.2.2尺寸校核1 .测定手腕质量为80kg,则重力G = mg= 80x10= 800(N)1,设计加速度4 = 5(s),则惯性力G1 = ma= 80x5= 400(N)3.考虑活塞等的摩擦力,设定一摩擦系数女=0.1,G,= g= 0.1x400= 4O(N)总受力 Gq=G + G+G,“= 800 + 400 + 40= 1240 (TV)Gq < G°所以设计尺寸符

41、合实际使用要求。5.3手臂回转气缸的尺寸设计与校核5 . 3.1尺寸设计气缸长度设计为。= 120,气缸内径为A = 210 ,半径R=105mm,轴径D,= 40半径R = 20,气缸运行角速度3=90。Is,加速度时间 一Z =0. 5s,压强P = 0.4A/Pa,则力矩:m =2_ 0.4x 106 x 0.12(0.1052 - 0.0202)2=255 (N.m)6 .3.2尺寸校核1 .测定参与手臂转动的部件的质量0=120kg,分析部件的质量分布情况,质量密度等效分布在一个半径r = 200/7的圆盘上,那么转动惯量:J = '2_ 120x0.1022=0.6 ( k

42、g.m2)7 co%= 0,6x210.5= 108 (Mm)考虑轴承,油封之间的摩擦力,设定摩擦系数女=0.2,"摩=惯= 0,2x108= 5.4( Mm)总驱动力矩M更=加惯+加摩= 108 + 5.4=113.4( N.?)M'M设计尺寸满足使用要求。第六章 机械手的PLC控制设计考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器 (PLC)对机械手进行控制.当机械手的动作流程改变时,只需改变PLC程序即可实 现,非常方便快捷。6. 1可编程序控制器的选择及工作过程6.1.1 可编程序控制器的选择目前,国际上生产可编程序控制器的厂家很多,如日本三菱公司

43、的F系列 PC,德国西门子公司的SIMATIC 5系列PC、日本0岷0(立石)公司的C型、P型 PC等。考虑到本机械手的输入输出点不多,工作流程较简单,同时考虑到制 造成本,因此在本次设计中选择了0MR0X公司的C28P型可编程序控制器。6.1.2 可编程序控制器的工作过程可编程序控制器是通过执行用户程序来完成各种不同控制任务的。为此 采用了循环扫描的工作方式。具体的工作过程可分为4个阶段。 第一阶段是初始化处理。可编程序控制器的输入端子不是直接与主机相连,CPU对输入输出状态的 询问是针对输入输出状态暂存器而言的。输入输出状态暂存器也称为I/O状态 表.该表是一个专门存放输入输出状态信息的存储区。其中存放输入状态信息 的存储器叫输入状态暂存器;存放输出状态信息的存储器叫输出状态暂存器。 开机时,CPU首先使I/O状态表清零,然后进行自诊断。当确认其硬件工作正 常后,进入下一阶段。第二阶段是处理输入信号阶段。在处理输入信号阶段,CPU对输入状态进行扫描,将获得的各个输入端子 的状态信息送到I/O状态表中存放。在同一扫描周期内,各个输入点的状态 在I/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论