函数的单调性与导数_第1页
函数的单调性与导数_第2页
函数的单调性与导数_第3页
函数的单调性与导数_第4页
函数的单调性与导数_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.3.1函数的单调性与导数函数函数 y = f (x) 在给定区间在给定区间 G 上,当上,当 x 1、x 2 G 且且 x 1 x 2 时时yxoabyxoab1)都有)都有 f ( x 1 ) f ( x 2 ),则则 f ( x ) 在在G 上是增函数上是增函数;2)都有)都有 f ( x 1 ) f ( x 2 ),则则 f ( x ) 在在G 上是减函数上是减函数;若若 f(x) 在在G上是增函数或减函数,上是增函数或减函数,则则 f(x) 在在G上具有严格的单调性。上具有严格的单调性。G 称为称为单调区间单调区间G = ( a , b )一、复习引入一、复习引入:单调性的概念:单

2、调性的概念:对于给定区间上的函数f(x):1.如果对于这个区间上的任意两个自变量x1,x2,当x1x2时,都有 f(x1)f(x2),那么就说f(x)在这个区间上是增函数增函数.2.如果对于这个区间上的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数减函数对于函数yf(x)在某个区间上单调递增递增或单调递减递减的性性质质,叫做f(x)在这个区间上的单调性单调性,这个区间区间叫做f(x)的单调区间单调区间。(1)函数的单调性也叫函数的增减性;函数的单调性也叫函数的增减性; (2)函数的单调性是对某个区间而言的,它是个局部概函数的单调性是对某个区间而言的,它是个局部

3、概 念。这个区间是定义域的子集。念。这个区间是定义域的子集。(3)单调区间:针对自变量单调区间:针对自变量x而言的。而言的。 若函数在此区间上是增函数,则为单调递增若函数在此区间上是增函数,则为单调递增区区间;间; 若函数在此区间上是减函数,则为单调递减区间。若函数在此区间上是减函数,则为单调递减区间。 以前以前,我们用定义来判断函数的单调性我们用定义来判断函数的单调性.在假设在假设x1x2的的前提下前提下,比较比较f(x1)0,则,则f(x) 是增函数。是增函数。 如果恒有如果恒有 f(x)0,则,则f(x) 是减函数。是减函数。 如果恒有如果恒有 f(x)=0,则,则f(x) 是常函数。是

4、常函数。例例1 已知导函数已知导函数 的下列信息的下列信息:当当1 x 4 , 或或 x 1时时,当当 x = 4 , 或或 x = 1时时,)(xf ; 0)( xf; 0)( xf. 0)( xf试画出函数试画出函数 的图象的大致形状的图象的大致形状.)(xf解解: 当当1 x 4 , 或或 x 0(或或f(x)1,即a2时,f(x)在(,1)和(a1,)上单调递增,在(1,a1)上单调递减,由题意知:(1,4)(1,a1)且(6,)(a1,), 所以4a16,即5a7. 解法二:(数形结合) 如图所示,f(x)(x1)x(a1)若在(1,4)内f(x)0,(6,)内f(x)0,且f(x)

5、0有一根为1,则另一根在4,6上 解法三:(转化为不等式的恒成立问题) f(x)x2axa1.因为f(x)在(1,4)内单调递减,所以f(x)0在(1,4)上恒成立即a(x1)x21在(1,4)上恒成立,所以ax1,因为2x17,所以a7时,f(x)0在(6,)上恒成立由题意知5a7. 点评本题是含参数单调性问题,是高考的重点和热点,体现了数学上的数形结合与转化思想2120 10 1已 知 函 数 ( ),( 若 ( ) 在(上 是 增 函 数 , 求的 取 值 范 围fxaxx,fxxx,a.322( )f xax解:由已知得解:由已知得因为函数在(因为函数在(0,1上单调递增上单调递增32

6、( )0,即在(0, 1上恒成立f xa-xx31max而 ( )在(0, 1上单调递增,( )(1)=-1g xxg xg 1a -变式变式322当a1时, ( )f xx 1对x (0, 1)也有 ( ) 0时,( )在(0, 1)上是增函数f xa-f x所以a的范围是-1,+ )本题用到一个重要的转化:本题用到一个重要的转化:maxminm f( )恒 成 立( )( )恒 成 立( )xmfxmfxmfx320已知函数 ( )=,(0, 1,若 ( )在(0, 1上是增函数,求 的取值范围练。习2f xax - xxaf xa3)2,练习练习10a4在某个区间上,在某个区间上, ,f(x)在这个区间上单调递增)在这个区间上单调递增(递减);但由(递减);但由f(x)在这个区间上单调递增(递减)而仅)在这个区间上单调递增(递减)而仅仅得到仅得到 是不够的。还有可能导数等于是不够的。还有可能导数等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论