版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上一元二次不等式一元二次不等式:含有一个未知数,且未知数的最高次数是2的整式不等式题型一、解一元二次不等式1.一元二次不等式的解法(大于取两边,小于取中间)(1)通过对不等式的变形,使不等式右边为0,左边二次项系数为正(2)对不等式的左边进行因式分解,若不易分解,则计算对应方程的判别式;(3)求出相应一元二次方程的根或根据判别式说明方程有无实数根;(4)画出对应的二次函数的简图(5)根据图象写出不等式的解集例1. 题型二、含参数的一元二次不等式及其解法1.解含参数的不等式时,应对参数进行讨论(1)以二次项系数是否为0进行讨论,以确定不等式是否为元二次不等式(2)转化为标
2、准形式(即右边为0,左边二次项的系数为正数)后,再对判别式与0的大小作为分类标准进行讨论;(3)如果判别式大于0,但对应方程的两实根的大小还不能确定,此时,再以两实数根大小为分类标准进行讨论2.含参数的不等式的解题步骤(1)将二次项系数转化为正数(2)判断对应的二次方程是否有根(如果可以直接分解因式,此步可省去)(3)根据根的情况写出相应的解集(若方程有相异实根,要分析两根的大小)注意1.当二次项含有参数时,应先讨论二次项系数是否为0这决定了不等式是否为二次不等式2.含参数的一元二次不等式的讨论顺序为:(1)二次项系数;(2)判别式;(3)若有实数根,两实数根的大小顺序3.对参数的讨论还应注意
3、以下几个方面:(1)对参数分类时,要目标明确,讨论时要不重不漏;(2)最后结果要分类回答,切不可取并集,解集为空集时,也是其中一类,不要随便丢掉4.并不是所有含有参数的不等式都要进行分类讨论例1. 解关于x的不等式:例2. 解关于x 的不等式:变式练习:1.解关于x的不等式:2. 解关于x 的不等式:题型三、三个“二次”的应用方法规律:给出了一元二次不等式的解集,则可知a的符号和的两实根,由根与系数的关系可知a,b,c之间的关系(1) 如果不等式的解集为,则说明a0,分别为方程的两根;若解集为,则说明a>0,分别为的两根(2) 如果不等式,则说明a>0,分别为的两根,若解集为,则说
4、明a<0,分别为的两根例1. 已知不等式,求a,b的值例2. 若不等式题型四、一元二次方程根的分布(两根与的大小比较)分布情况两根都小于即两根都大于即一个根小于,一个大于即大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)一元二次方程的两根与k的大小比较主要结论:例1. 已知方程例2. 已知二次方程题型五、两根分布与区间的关系(根在区间上的分布)分布情况两根都在内两根有且仅有一根在内(图象有两种情况,只画了一种)一根在内,另一根在内,大致图象()得出的结论或大致图象()得出的结论或综合结论(不讨论)根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)
5、需满足的条件是 (1)时,; (2)时,例1. 若关于x的方程例2. 求实数m的取值范围,使关于x的方程(1) 有两个实根,且一个比2大,一个比2小(2) 有两个实根,且满足变式练习:1、已知二次方程有一正根和一负根,求实数的取值范围。2、已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。题型六、可化为一元二次不等式的不等式的解法1. 分式不等式2. 高次不等式例1. 解不等式:例2. 解不等式例3. 解分式不等式: 题型七、一元二次不等式的恒成立一元二次不等式恒成立问题的解法:(1) 分离参数法:把所求参数与自变量分离,转化为求具体函数的最值问题。(2) 不等式组法:借助二次函数的图像性质,列不等式组例1已知不等式x2-2ax+2>0对恒成立,求实数a的取值范围。例2对任意,不等式恒成立,求的取值范围。例3:若-3<x<1时,不等式(1-a)x2-4x+6>0恒成立,求a的取值范围。变式练习:1.已知函数的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年连云港货运从业资格考试题目
- 2025年广安货运从业资格证模拟考试
- 《行政单位会计负债》课件
- 2025年泸州货运资格证考试题答案
- 《城市近期规划》课件
- 酿酒行业客户投诉处理条例
- 租赁招标中介协议
- 社区活动室窗帘定制方案
- 红枣加工厂市场营销合同
- 银行业金融监管系统施工协议
- 最新标点符号用法
- 特困人员生活自理能力评估表
- 预拌混凝土企业质量管理体系·程序文件
- 外国人换发或补发永久居留证件申请表样本
- 塔吊安装旁站监理记录表(示范稿)
- GCC认证对整车的一般要求
- OBD-II标准故障代码表
- 施工现场类安全隐患排查清单表
- 采购项目组织履约、验收方案、程序、办法
- 送货单(三联针式打印)
- pdca循环在护理教学中的应用学习教案
评论
0/150
提交评论