教案--第一章行列式_第1页
教案--第一章行列式_第2页
教案--第一章行列式_第3页
教案--第一章行列式_第4页
教案--第一章行列式_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、物流学院20152016学年度第 1 学期 线性代数 课堂教学方案授课年级 2014 专业层次 会计学本科 授课班级 1、2、3、4班 授课教师 2015 年 8 月 28 日线性代数教案任课教师授课班级2014级会计学本科班授课时间教学时间安排2学时授课题目(章节)第一章 行列式第一节 二阶与三阶行列式教学目的、要求(教学目标) 了解行列式的概念 掌握二阶、三阶行列式的计算方法教学重点与难点二阶、三阶行列式的计算教学方式、方法与手段 讲授与练习相结合、板书与多媒体相结合教学基本内容及过程问题导入:历史上,行列式的概念是在研究线性方程组的解的过程中产生的.如今,它在数学的许多分支中都有着非常广

2、泛的应用,是一种常用的计算工具.特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具.二阶行列式与三阶行列式的内容在中学课程中已经涉及到,本节主要对这些知识进行复习与总结,它们是我们学习和讨论更高阶行列式计算的基础.内容要点一、二阶行列式二、二阶线性方程组三、三阶行列式=三阶行列式有6项,每一项均为不同行不同列的三个元素之积再冠于正负号,其运算的规律性可用“对角线法则”或“沙路法则”来表述之。四、三元线性方程组类似于二元线性方程组的讨论,对三元线性方程组记= = =若系数行列式,则该方程组有唯一解:例题选讲例1 解方程组例2计算三阶行列式例3 求解方程例4 解三元

3、线性方程组本学期要求叙述5分钟课程介绍20分钟理论讲解35分钟,习题选讲25分钟,练习、答疑5分钟提问:行列式是什么?是否具有几何意义?注:沙路法则是对角线发则的变形,仅适用于二阶、三阶行列式作业与课外训练1.设 试给出的充分必要条件.2.求一个二次多项式,使 P5 2 3课外阅读资料或自主学习体系安排1.经济应用数学基础编写组编,线性代数与线性规划学习指导,同心出版社,19952.张天德,线性代数习题精选精解,山东科学技术出版社,20093. 课后小结这节课我们回顾中学数学中二元一次方程组、三元一次方程组的解法(尤其是行列式解法。引入二阶行列式、三阶行列式的概念。重点介绍行、列、元素、元素的

4、代数表示法、行标、列标。线性代数教案任课教师授课班级2014级会计学本科班授课时间教学时间安排2学时授课题目(章节)第二节 n阶行列式教学目的、要求(教学目标) 了解排列、逆序数、对换的概念及相关结论 掌握n阶行列式的定义及计算方法教学重点与难点n阶行列式的定义及计算方法,n阶行列式一般项符号的确定教学方式、方法与手段 讲授与练习相结合、板书与多媒体相结合教学基本内容及过程问题导入:对角线算法能用于4阶以上的行列式吗?对于4阶及4阶以上行列式代表的代数和的形式又是如何呢?从三阶行列式的定义,我们看到:(1) 三阶行列式共有3!6项;(2) 行列式中的每一项都是取自不同行不同列的三个元素的乘积;

5、(3) 行列式中的每一项的符号均与该项元素下标的排列顺序有关. 受此启示,我们可以引入n阶行列式的定义. 此外,在本节中,我们还要了解几个今后常用的特殊的n阶行列式(对角行列与三角形行列式等)的计算方法.内容要点一、排列与逆序定义1 由自然数1,2,n 组成的不重复的每一种有确定次序的排列,称为一个n级排列(简称为排列)。例如,1234和4312都是4级排列,而24315是一个5级排列. 定义2 在一个级排列中,若数 则称数与构成一个逆序.一个级排列中逆序的总数称为该排列的逆序数, 记为定义3 逆序数为奇数的排列称为奇排列, 逆序数为偶数的排列称为偶排列.逆序数的计算方法:先计算出排列中每个元

6、素逆序的个数,即计算出排列中每个元素前面比它大的元素个数,该排列中所有元素的逆序数之总和即为所求排列的逆序数.二、n阶行列式的定义定义4 由个元素组成的记号 称为阶行列式, 其中横排称为行, 竖排称为列, 它表示所有取自不同行、不同列的个元素乘积的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号.其中表示对所有级排列求和. 行列式有时也简记为det或,这里数称为行列式的元素,称 为行列式的一般项.注: (1)行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次线性方程组的需要而定义的;(2) 阶行列式是项的

7、代数和, 且冠以正号的项和冠以负号的项(不算元素本身所带的符号)各占一半; (3 ) 的符号为(不算元素本身所带的符号); (4 ) 一阶行列式 不要与绝对值记号相混淆.三、对换为进一步研究n阶行列式的性质,先要讨论对换的概念及其与排列奇偶性的关系。定义5 在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续称为对换。将两个相邻元素对换,称为相邻对换。定理1 任意一个排列经过一个对换后,其奇偶性改变。推论 奇排列变成自然顺序排列的对换次数为奇数, 偶排列变成自然顺序排列的对换次数为偶数.定理2 n 个自然数(n>1)共有n!个n级排列,其中奇偶排列各占一半. (结论推导)定

8、理3 阶行列式也定义为其中S为行标与列标排列的逆序数之和. 即S=。推论 n阶行列式也可定义为例题选讲排列与逆序例1 计算排列32514的逆序数.例2 求排列的逆序数, 并讨论其奇偶性.n阶行列式的定义例3计算行列式例4 计算上三角形行列式同理,下三角形行列式行列式中从左上角到右下角的对角线称为主对角线.例5 在六阶行列式中, 下列两项各应带什么符号 (1) (2) 例6 用行列式的定义计算 理论讲解55分钟,习题选讲30分钟,练习、答疑5分钟提问:n阶行列式代数和的构成是怎样的?提问:在什么情况下使用定义计算行列式?作业与课外训练1.若是五阶行列式的一项,则应为何值?此时该项的符号是什么?2

9、.用行列式的定义计算下列行列式: 3.已知求的系数.P10 3 4 课外阅读资料或自主学习体系安排1.经济应用数学基础编写组编,线性代数与线性规划学习指导,同心出版社,19952.张天德,线性代数习题精选精解,山东科学技术出版社,20093. 课后小结从三阶行列式的定义,我们看到:(1) 三阶行列式共有3!6项;(2) 行列式中的每一项都是取自不同行不同列的三个元素的乘积;(3) 行列式中的每一项的符号均与该项元素下标的排列顺序有关. 受此启示,本节我们引入了n阶行列式的定义. 此外,我们还介绍了几个今后常用的特殊的n阶行列式(对角行列与三角形行列式等)的计算方法。线性代数教案任课教师授课班级

10、2014级会计学本科班授课时间教学时间安排4学时授课题目(章节)第三节 行列式的性质教学目的、要求(教学目标) 熟练掌握行列式的性质 掌握化为上、下三角形行列式的步骤教学重点与难点利用行列式性质化行列式上、下三角教学方式、方法与手段 讲授与练习相结合、板书与多媒体相结合教学基本内容及过程问题导入:根据n阶行列式定义可知,对角线算法不能用于4阶以上的行列式得计算,从上节课的学习可知,当行列式中只含有极少量非零元素时,可以利用定义的方法进行计算,然而对于一般高阶行列式又该计算学习呢?行列式的奥妙在于对行列式的行或列进行了某些变换(如行与列互换、交换两行(列)位置、某行(列)乘以某个数、某行(列)乘

11、以某数后加到另一行(列)等)后,行列式虽然会发生相应的变化,但变换前后两个行列式的值却仍保持着线性关系,这意味着,我们可以利用这些关系大大简化高阶行列式的计算. 本节我们首先要讨论行列式的在这方面的重要性质,然后,利用进一步讨论如何利用这些性质计算高阶行列式的值.内容要点一、行列式的性质将行列式的行与列互换后得到的行列式,称为的转置行列式,记为或,即若 则 .性质1 行列式与它的转置行列式相等, 即注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号.推论 若行列式中有两行(列)的对应元素相同,则此行列式为零.性

12、质3 用数乘行列式的某一行(列), 等于用数乘此行列式, 即第行(列)乘以,记为(或).推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.推论2 行列式中若有两行(列)元素成比例,则此行列式为零.性质4 若行列式的某一行(列)的元素都是两数之和, 例如,.则 .性质5 将行列式的某一行(列)的所有元素都乘以数后加到另一行(列)对应位置的元素上, 行列式不变.注: 以数乘第行加到第行上,记作; 以数乘第列加到第列上,记作.二、利用“三角化”计算行列式计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:如果第一列第一个元素为0, 先将

13、第一行与其它行交换使得第一列第一个元素不为0; 然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;再用同样的方法处理除去第一行和第一列后余下的低一阶行列式,如此继续下去,直至使它成为上三角形行列式,这时主对角线上元素的乘积就是所求行列式的值.例题选讲例1 设 求例2 计算例3 计算分析 注意到行列式的各列4个数之和都是6.故把第2,3,4行同时加到第1行,可提出公因子6,再由各行减去第一行化为上三角形行列式.注:仿照上述方法可得到更一般的结果:例4 计算 分析 根据行列式的特点,可将第1列加至第2列,然后将第2列加至第3列,再将第3列加至第4列,目的是使中的零元

14、素增多.例5 计算分析 从第4行开始,后一行减前一行:例6 解方程分析 从第二行开始每一行都减去第一行得由解得方程的个根:理论讲解55分钟,习题选讲100分钟,练习、答疑25分钟提问:什么是转置行列式?与原行列式有什么关系?这说明行列式的什么性质?提问:交换行列式的任意两行(列),行列式有什么变化?作业与课外训练1.计算行列式2.计算n阶行列式 P16 2 4 5课外阅读资料或自主学习体系安排1.经济应用数学基础编写组编,线性代数与线性规划学习指导,同心出版社,19952.张天德,线性代数习题精选精解,山东科学技术出版社,20093. 课后小结这节课介绍了行列式的性质,知道了当对行列式的行或列

15、进行了某些变换(如行与列互换、交换两行(列)位置、某行(列)乘以某个数、某行(列)乘以某数后加到另一行(列)等)后,变换前后两个行列式的值仍保持着线性关系, 使我们可以利用这些关系大大简化高阶行列式的计算. 进一步讨论了如何利用这些性质计算高阶行列式的值.线性代数教案任课教师授课班级2014级会计学本科班授课时间教学时间安排2学时授课题目(章节)第四节 行列式按行(列)展开教学目的、要求(教学目标) 掌握余子式、代数余子式的概念 掌握行列式按行(列)展开的方法、范德蒙行列式计算公式教学重点与难点使用降阶法计算行列式的方法,范德蒙行列式的计算教学方式、方法与手段 讲授与练习相结合、板书与多媒体相

16、结合教学基本内容及过程问题导入:当行列式的阶数较高时,直接根据定义计算n阶行列式的值是困难的,即使利用性质来计算,在有些时候也是很难得到想要的结果,能不能把高阶行列式转换为低阶行列式呢,如果可以,又该如何操作呢?本节我们要研究如何把较高阶的行列式转化为较低阶行列式的问题,从而得到计算行列式的另一种基本方法降阶法内容要点一、行列式按一行(列)展开定义1 在阶行列式中,去掉元素所在的第行和第列后,余下的阶行列式,称为中元素的余子式, 记为, 再记称为元素的代数余子式.引理 一个n阶行列式D , 若其中第i行所有元素除外都为零,则该行列式等于与它的代数余子式的乘积,即 定理1 行列式等于它的任一行(

17、列)的各元素与其对应的代数余子式乘积之和, 即或 推论 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零, 即或 综上所述, 可得到有关代数余子式的一个重要性质: 或 其中,二、用降价法计算行列式直接应用按行(列)展开法则计算行列式, 运算量较大, 尤其是高阶行列式. 因此, 计算行列式时,一般可先用行列式的性质将行列式中某一行(列)化为仅含有一个非零元素, 再按此行(列)展开,化为低一阶的行列式, 如此继续下去直到化为三阶或二阶行列式.例题选讲例1 试按第三列展开计算行列式例2 计算行列式 例3 计算行列式 例4 求证 .例5 证明范德蒙德(Vandermonde)

18、行列式其中记号“”表示全体同类因子的乘积.分析 用数学归纳法. 理论讲解35分钟,习题选讲50分钟,练习、答疑5分钟提问:推论结论说明了什么?重点提示:降阶法与上节利用行列式性质把行列式化为上、下三角的异同注:重点讲解范德蒙德(Vandermonde)行列式作业与课外训练1. 计算行列式 2.讨论当k为何值时 3.设阶行列式 求第一行各元素的代数余子式之和 P21 2 5 课外阅读资料或自主学习体系安排1.经济应用数学基础编写组编,线性代数与线性规划学习指导,同心出版社,19952.张天德,线性代数习题精选精解,山东科学技术出版社,20093. 课后小结本节课我们学习了在n阶行列式中,划去元素

19、aij所在的第i行和第j列后,余下的元素按原来的位置构成一个n1阶行列式,称为元素aij的余子式,记作ij元素aij的余子式ij前面添上符号(1)i+j称为元素aij的代数余子式n阶行列式可以用n1阶行列式来表示,利用它并结合行列式的性质,可以大大简化行列式的计算计算行列式时,一般利用性质将某一行(列)化简为仅有一个非零元素,再按定理1展开,变为低一阶行列式,如此继续下去,直到将行列式化为三阶或二阶这在行列式的计算中是一种常用的方法线性代数教案任课教师授课班级2014级会计学本科班授课时间教学时间安排2学时授课题目(章节)第五节 克莱姆法则教学目的、要求(教学目标) 了解线性方程组解的存在条件

20、 掌握应用克莱姆法则求解线性方程组教学重点与难点线性方程组解的存在性判断方法教学方式、方法与手段 讲授与练习相结合、板书与多媒体相结合教学基本内容及过程问题导入:前面我们已经介绍了n阶行列式的定义和计算方法,作为行列式的应用,本节介绍用行列式解n元线性方程组的方法克莱姆法则它是第一节中二、三元线性方程组求解公式的推广内容要点n元线性方程组的概念从三元线性方程组的解的讨论出发,对更一般的线性方程组进行探讨。在引入克莱姆法则之前,我们先介绍有关n元线性方程组的概念。含有n个未知数的线性方程组称为n元线性方程组.当其右端的常数项不全为零时,线性方程组(1)称为非齐次线性方程组,当全为零时, 线性方程

21、组(1)称为齐次线性方程组,即线性方程组(1)的系数构成的行列式称为该方程组的系数行列式,即 .克莱姆法则定理1 (克莱姆法则) 若线性方程组(1)的系数行列式, 则线性方程组(1)有唯一解,其解为 (3)其中是把中第列元素对应地换成常数项而其余各列保持不变所得到的行列式. 一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的. 对具体的数字线性方程组,当未知数较多时往往可用计算机来求解. 用计算机求解线性方程组目前已经有了一整套成熟的方法. 克莱姆法则在一定条件下给出了线性方程组解的存在性、唯一性,与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值. 撇开求解公式(3),克莱姆法则可叙述为下面的定理.定理2 如果线性方程组(1)的系数行列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论