版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 2.3.4平面向量共线的坐标表示平面向量共线的坐标表示1、若向量、若向量 a 的起点坐标为(的起点坐标为(3,1),终终点坐标为(点坐标为(3,1)求)求 a 的坐标的坐标.2、已知向量、已知向量 (6,1),), (1 ,3),), (1,2),), 求向量求向量 .ABBCCDDA 调用几何画板课前复习:课前复习:新课讲解新课讲解2. 如何用坐标表示向量平行如何用坐标表示向量平行(共线共线)的充要条件的充要条件? 会得到什么样的重要结论会得到什么样的重要结论?1. 向量向量 与非零向量与非零向量 平行平行(共线共线)的充要条件是有且的充要条件是有且 只有一个实数只有一个实数 , 使得使得
2、abba设设即即 中中,至少有一个不为至少有一个不为0 ,则由则由 得得),(11yxa ),(22yxb ba0,b22, yx01221yxyx01221yxyx这就是说这就是说: 的充要条件是的充要条件是 )0(/bba3. 向量平行向量平行(共线共线)充要条件的两种形式充要条件的两种形式:0)0),(),(/)2(;)0(/) 1 (12212211yxyxbyxbyxabababba2.3.4 平面向量共线的坐标表示平面向量共线的坐标表示注:1.消去时不能两式相除,因为有可能为0; 2. 不能写成 因为x1、x2有可能为0; 12210 x yx y1212yyxx例例 题题1. 已
3、知已知ybayba求且,/), 6(),2 , 4(2. 已知已知 求证求证: A、B、C 三点共线。三点共线。),5 ,2(),3 , 1(),1, 1(CBA3. 若向量若向量 与与 共线且共线且 方向相同方向相同, 求求 x.), 1(xa)2 ,( xb2.3.4 平面向量共线的坐标表示平面向量共线的坐标表示练习:练习:1.已知a=(4, 2),b=(6, y),且a/b,求y. y=32.已知a=(3, 4), b=(cos, sin), 且a/b, 求tan. tan=4 /33. 已知a=(1, 0), b=(2, 1), 当实数k为何值时,向量kab与a+3b平行? 并确定它们
4、是同向还是反向. 解:kab=(k2, 1), a+3b=(7, 3), a/b, 13k 这两个向量是反向。4. 若三点P(1, 1),A(2, 4),B(x, 9)共线, 则 ( ) Ax =1 Bx=3 Cx = Dx=5192B5.设a=( , sin),b=(cos, ),且a/ b,则锐角为 ( ) A30o B60o C45o D75o 2331C6( 5,4)545 ,4 ),)( )( 10,2)()(5 , 4 )aAkkBkkCDkk 、与不平行的向量是()( )( )(7(12,5)12125513131312 512512513 1313131313aABCD、与平行的单位向量是()( )(, )( )(,)( )(, )或(,)( )(,)8. ABC的三条边的中点分别为(2, 1)和(3, 4),(1,1),则ABC的重心坐标为 _ 2 4(,)3 39.已知向量a=(2x, 7), b=(6, x+4),当x=_时,a/b 3或7 小结:小结:221b1a 01221a /a :1bababbab 方法方法、判断向量共线的三种、判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专属委托代理协议样本版A版
- 2024年专业项目融资促成协议样本版B版
- 2024届校园暑期实习代理合作合同版
- 2024年协议主体过渡期补充协议版B版
- 2024年中医院医疗日用百货供应协议版B版
- 2024年小产权房产买卖详细协议版
- 2024年度保险合同保险范围和保险条件
- 2024年小产权房买卖详细协议范本版B版
- 2024安全生产标准化实施协议版B版
- 2024年住宅购买销售协议样本版
- 员工履历表(标准样本)
- 国企思想政治工作先进单位事迹材料(思想政治工作经验材料)
- 新能源发电技术 课件 第一章-新能源发电概述
- 00015-英语二自学教程-unit2
- 东昌区移动厕所施工方案
- 八年级上学期期中家长会课件详解
- QSY1242-2009进入受限空间安全管理规范
- 家校同心家校共育+高二上学期期中家长会
- 2024年陕西省中考数学真题试卷及答案
- 现场急救实训总结与反思
- 评剧《秦香莲》剧本
评论
0/150
提交评论