充分必要条件2_第1页
充分必要条件2_第2页
充分必要条件2_第3页
充分必要条件2_第4页
充分必要条件2_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.定义:定义:1.,. q. pq qppq若则 是 的充分不必要条件是p的必要不充分条件.,. 2互为充要条件与也说简称充要条件充分必要条件,是则即若qpqpqppqqp,. q. pq qppq3.若则 是 的既充分不必要条件是p的既必要不充分条件对于命题对于命题“若若p则则q”知识点复习从命题角度看从命题角度看引申引申若p则q是真命题,那么p是q的充分条件 q是p的必要条件.若p则q是真命题,若q则p为假命题,那么p是q 的充分不必要条件,q是p必要不充分条件.(四)(四)若p则q,若q则p都是假命题,那么p是q的既不充分也不必要条件,q是p既不充分也不必要条件.(三)若p则q,若q则

2、p都是真命题,那么p是q的充要条件从集合角度看从集合角度看(集合判定法集合判定法)命题命题“若若p则则q”.,) 1必要条件是充分条件,是则pqqpBA.,)3的充要条件是则qpBA.,)2必要不充分条件是充分不必要条件,是则pqqpBA.qpAB)4既不充分也不必要条件是,则且 BA引申引申q|Bp|A满足条件,满足条件已知xxxx小为大的充分,大为小的必要 例例1、以、以“充分不必要条件充分不必要条件”、“必要不充分条件必要不充分条件”、“充充要条件要条件”与与”既不充分也不必要条件既不充分也不必要条件“中选出适当的一种中选出适当的一种填空填空.21)0,002 3 10104 5)536

3、)7ABCAB tantanxyxyaNaZxxxxabacbcAB 是的)是的)是的)同旁内角互补 是 两直线平行 的是的是的)已知不是直角三角形,是的(充分不必要条件)(充分不必要条件)(充分不必要条件)(充分不必要条件)(必要不充分条件)(必要不充分条件)(必要不充分条件)(必要不充分条件)(充要条件)(充要条件)(充要条件)(充要条件)(既不充分也不必要条件)(既不充分也不必要条件)既不充分也不必要条件充要条件必要不充分条件充分不必要条件)(的是则命题无公共点与命题直线线是不同的两个平面,直、已知例D. C.B. A. ,/:,2qpq;bapaa既不充分也必要条件充要条件必要不充分条

4、件充分不必要条件)那么甲是乙的(命题乙、设命题甲例D. C.B. A. , 32:, 50:3xx B Am,n,D.n ,.,B. , A. 4mCmlmlmlnm,)一个充分条件是(的为直线,则、为平面,、设例既不充分也不必要条件充要条件必要不充分条件充分不必要条件)(的是则为锐角,若、已知例D. C.B. A. ,2:),sin(sin:5qpqp D B例例6、若、若p是是r的充分不必要条件,的充分不必要条件,r是是q的必要的必要条件,条件,r又是又是s的充要条件,的充要条件,q是是s的必要条件的必要条件.则:则: 1)s是是p的什么条件?的什么条件? 2)r是是q的什么条件?的什么条

5、件?必要不充分条件必要不充分条件充要条件充要条件2.2.充要条件的证明充要条件的证明. 011,1xyyxyxyx的充要条件是求证:是非零实数,且、已知例注意:分清注意:分清p p与与q.q.yxq11:0:xyp)(qp 证明:充分性00 00, 0yxyxxy或则若.110, 0yxyxyx时,有:当.110, 0yxyx时,有:当. 00. 0)(, 0,11)(xyxyyxxyxyxyxyyxpq即则有:若必要性. 01, 022233baabbabaab的充要条件是求证:、已知例.010332实根的充要条件有两个同号且不相等、求例kxx.3250 kP.12 A组 第4题 B组第2题0 x0D.x 6x1C.x 6 xB. 1 xA.7523., 0)4)(3( : , 0)4() 3( :, 2.,:,: 1.2222或或条件是()成立的一个必要不充分不等式的什么条件是则若的什么条件是则或若练习:xqpyxqyxpRyxpqyxyxqyxp一般以下几种情况适宜使用反证法一般以下几种情况适宜使用反证法(1)结论本身是以否定形式出现的一类)结论本身是以否定形式出现的一类命题;命题;(2)有关结论是以)有关结论是以“至多至多”,或,或“至少至少”的形式出现的一类命题;的形式出现的一类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论