版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Quality ManagementQuality Management质量管理学任务一任务一 收集质量特性数据收集质量特性数据任务二任务二 整理与显示数据整理与显示数据任务三任务三 统计分析方法的应用统计分析方法的应用质量管理方法质量管理方法质量管理方法质量管理方法 1. 1.了解质量特性数据的含义、类型与收集方法;了解质量特性数据的含义、类型与收集方法; 2. 2.掌握数据排序、数据分组的方法;掌握数据排序、数据分组的方法; 3. 3.熟知数据特征的描述;熟知数据特征的描述; 4. 4.掌握参数估计、假设检验、相关分析、回归掌握参数估计、假设检验、相关分析、回归 分析等统计分析方法。分析等
2、统计分析方法。 任务一收集质量特性数据任务一收集质量特性数据数据信息是企业重要的战略资源, 合理有效地使用正确的数据能指导企 业领导作出正确的决策,提高企业 的竞争力。不合理地使用不正确的数据(差的数据质量)可导致决策的失败,正可谓差之毫厘、谬以千里。任务一收集质量特性数据任务一收集质量特性数据任务一收集质量特性数据任务一收集质量特性数据质量数据是指某质量指标的质量特性值,由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中几乎无处不在。1. 1. 波动性波动性2. 2. 规律性规律性任务一收集质量特性数据任务一收集质量特性数据波动
3、性是指在相同的生产技术条件下生产出来的一批产品,其质量特性数据由于受到操作者、设备、材料、方法、环境等多种因素的影响而总存在着一定的差异。1. 波动性任务一收集质量特性数据任务一收集质量特性数据规律性是指当生产过程处于正常状态时,其质量数据的波动是有一定规律的。2. 规律性任务一收集质量特性数据任务一收集质量特性数据1. 计数值数据2. 计量值数据任务一收集质量特性数据任务一收集质量特性数据计数值数据是指在有限的区间内只能取有限个整数值的数据,其取值只能是大于或等于零的整数,否则将失去其实际意义,如铸件内的气孔个数、一批产品中不合格品的件数等。1. 计数值数据任务一收集质量特性数据任务一收集质
4、量特性数据计数值数据又可分为计件值数据和计点值数据。 (1)计件值数据,表示具有某一质量标准的产品个数,如总体中合格品数、一级品数。(2)计点值数据,表示个体(单件产品、单位长度、单位面积、单位体积等)上的缺陷数、质量问题点数等,如检验钢结构构件涂料涂装质量时,构件表面的焊渣、焊疤、油污、毛刺数量等。任务一收集质量特性数据任务一收集质量特性数据计量值数据是指在某个区间上的可能取值具有连续性的数据,即在该区间内可以取无穷多个实数值。常见的计量值数据有质量、面积、长度和体积等。此外,一些属于定性的质量特性,可由专家主观评分、划分等级而使之数量化,得到的数据也属于计量值数据。2. 计量值数据任务一收
5、集质量特性数据任务一收集质量特性数据 定性数据是用来描述质量的定性特征的数据。任务一收集质量特性数据任务一收集质量特性数据任务一收集质量特性数据任务一收集质量特性数据全数检验是对总体全数检验是对总体中的全部个体逐一观察、中的全部个体逐一观察、测量、计数、登记,从而测量、计数、登记,从而 获得对总体质量水平获得对总体质量水平 评价结论的方法。评价结论的方法。外国公司怎样才能更加稳妥地进入中国市场? 哈根达斯是一个国际著名的冰淇淋品牌。在进入中国冷饮市场前曾经做了大量细致的市场调查工作。公司认为首先要确定进入中国市场的“登陆滩”。公司从居民的收入水平、消费习惯、对外来产品的接受能力等方面对中国几个
6、大城市作了调查,结果表明上海是最理想的首选地。同时调查结果还表明,上海对中国其他地方消费观念的影响作用也十分明显。 接下来哈根达斯着手研究的是通过什么渠道将产品推进上海的千家万户。调查结果显示上海市民选购冷饮的基本地方是:食品商场、大卖场、超市和便利店。但是对具体的品牌选择上有明显的“购买场所与品牌”的倾向。一些早期进入上海冷饮市场的国际品牌有自己的专卖店(与著名零售商业合作)。而中外合资的便利店中顾客都是较高收入者和追求新奇的年轻人,这部分人是国际品牌在上海的领先采用者。所以,哈根达斯选择在特定便利店与顾客“见面”的销售方式。最早可以选择那些开设在高中、大学校园附近的和高档住宅区邻近的便利店
7、,稳定一段时间使顾客形成购买习惯。 任务一收集质量特性数据任务一收集质量特性数据 产品包装设计的调查结果表明,哈根达斯若像可口可乐那样“中国化”可能会影响它的品牌形象,所以公司决定在包装设计上尽量维持原有特征。 最后的调查目标是“上海消费者会接受的价格水平”。“和路雪”也是外来者,它已经成为上海消费者最熟悉的食品商品品牌,价格已经作了几次调整,成为大众化冷饮,而哈根达斯要独树一帜,就必须差异化营销。由于哈根达斯的产品定位是高档冰淇淋,价格不能低,这样才能避免陷入原定目标顾客的“价廉无好货”的思维定势。 近年来的实践证明,哈根达斯制定的营销策略实现了既定目标。在年轻人中的普及率、忠诚度都达到并稳
8、定在一定的水平。 任务一收集质量特性数据任务一收集质量特性数据任务一收集质量特性数据任务一收集质量特性数据抽样检验是按照随机抽样的原则,从总体中抽取部分个体组成样本,根据对样品进行检测的结果,推断总体质量水平的方法。 抽样检验抽取样品不受检验人员主观意愿的支配,每一个体被抽中的概率都相同,从而保证了样本在总体中的分布比较均匀,有充分的代表性;同时它还具有节省人力、物力、财力、时间和准确性高的优点;它又可用于破坏性检验和生产过程的质量监控,完成全数检测无法进行的检测项目,具有广泛的应用空间。1. 简单随机简单随机抽样抽样2. 分层抽样分层抽样3. 系统抽样系统抽样4. 整群抽样整群抽样5. 多阶
9、段抽样多阶段抽样任务一收集质量特性数据任务一收集质量特性数据随机抽样方法分为:随机抽样方法分为:简单随机抽样又称纯随机抽样、完全随机抽样,是对总体不进行任何加工,直接进行随机抽样,获取样本的方法。简单随机抽样是指从含有N个单位的总体中随机抽取n个单位作为样本,使得每一个容量为n的样本都有相同的机会(概率)被抽中,这样的抽样方式也称纯随机抽样。简单随机抽样是最基本的抽样方法。1. 简单随机抽样任务一收集质量特性数据任务一收集质量特性数据采用简单随机抽样方式抽取样本,先要将总体各个单位进行编码,后按随机原则抽取若干数码,所有中选数码所对应的单位即构成样本。具体做法如下。任务一收集质量特性数据任务一
10、收集质量特性数据(1 1)抽签法。)抽签法。当给总体各单位编号后,把号码写在结构无效的签上,将签混合均匀后即可以从中抽取。采用这种方法简便易行,然而对较大的总体来说,编号做签工作量很大,而且混匀有困难,所以,这种方法的应用具有一定局限性。任务一收集质量特性数据任务一收集质量特性数据(2 2)随机数字法。)随机数字法。随机数字可以借助于计算机获得,也可应用随机数表,其中随机数表方法应用较为普遍。表中数字是按照完全随机的方法排列的。利用随机数表进行抽样时,首先要给每个总体单位编号,据编号的最大位数确定将要使用随机数表的列数,然后从表中任意一列、任意一行开始,由纵向或横向划线取数,遇到属于总体单位编
11、号范围内的数组就确定为样本单位,然后继续往下找。如果要求不重复抽样时,遇到重复出现的数字(组)就弃之,直到取足要求的单位数为止。2. 分层抽样任务一收集质量特性数据任务一收集质量特性数据分层抽样又称分类或分组抽样,是指在抽样之前先将总体划分为若干层(类),然后从各个层(类)中抽取一定数量的单位组成样本的抽样方式。任务一收集质量特性数据任务一收集质量特性数据例例子子某大学的经济管理学院想对某大学的经济管理学院想对2012015 5年的毕业生年的毕业生进行一次调查,以便了解他们该年度的就业倾向。进行一次调查,以便了解他们该年度的就业倾向。该大学经济管理学院共有该大学经济管理学院共有5 5个专业:工
12、商管理、经济个专业:工商管理、经济贸易、市场营销、经营管理、物流管理。贸易、市场营销、经营管理、物流管理。2012015 5年共有年共有4 5004 500名毕业生,其中工商管理专业名毕业生,其中工商管理专业1 0501 050名,经济贸易专业名,经济贸易专业850850名,市场营销专业名,市场营销专业1 1501 150名,经营管理专业名,经营管理专业1 1501 150名,名,物流管理专业物流管理专业300300名。使用分层抽样,假定要选取名。使用分层抽样,假定要选取450450人作为样本单位,各专业应抽取的人数分别为:工商人作为样本单位,各专业应抽取的人数分别为:工商管理专业管理专业10
13、5105名,经济贸易专业名,经济贸易专业8585名,市场营销专业名,市场营销专业115115名,经营管理专业名,经营管理专业115115名,物流管理专业名,物流管理专业3030名。名。任务一收集质量特性数据任务一收集质量特性数据分层抽样是一种常用的抽样方式。它主要具有以下优点。(1) 分层抽样既可以对总体进行估计,也可以对各层的子总体进行估计。(2) 分层抽样既可以按自然区域分层,也可以按行政区域进行分层,这样使抽样的组织和实施都比较方便。(3) 分层抽样的样本分布在各个层内,从而使样本在总体中的分布比较均匀。(4) 分层抽样可以提高估计的精度。任务一收集质量特性数据任务一收集质量特性数据3.
14、 系统抽样系统抽样,也称等距抽样或机械抽样,是指先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点,然后,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本的抽样方式。任务一收集质量特性数据任务一收集质量特性数据系统抽样也是一种常用的抽样方式,它主要具有以下优点。(1)简便易行。当样本容量很大时,简单随机抽样要逐个使用随机数字表抽选也是非常麻烦的,而系统抽样有了总体元素的排序,只要确定出抽样的起点和间隔后,样本元素也就随之确定,而且可以利用现有的排列顺序。(2)系统抽样的样本在总体中的分布一般也比较均匀,由此抽样误差通常要小于简单随机抽样。如果掌握了总体的有关信息,将总体各元素按
15、有关标志排列,就可以提高估计的精度。整群抽样(cluster sampling),也称集团抽样或分群随机抽样,是将总体划分成若干群,然后以群作为抽样单位,从中抽取部分群,再对抽中的各个群中所包含的所有单位进行观察的抽样方式。4. 整群抽样任务一收集质量特性数据任务一收集质量特性数据整群抽样具有以下优点。(1) 不需要有总体元素的具体名单而只要有群的名单就可以进行抽样,而群的名单比较容易得到。(2) 整群抽样时群内各元素比较集中,对样本进行调查比较方便,节约费用。当群内的各元素存在差异时,整群抽样可以提供较好的结果,理想的情况是每一群都是整个总体的一个缩影。在这种情况下,抽取很少的群就可以提供有
16、关总体特征的信息。但是,如果实际情况不是这样,那么整群抽样的误差会很大,相应地,效果也就很差。任务一收集质量特性数据任务一收集质量特性数据5. 多阶段抽样任务一收集质量特性数据任务一收集质量特性数据多阶段抽样又称多级抽样。上述抽样方法的共同特点是整个过程中只有一次随机抽样,因而统称为单阶段抽样。但是当总体很大时,很难一次抽样完成预定的目标。多阶段抽样是将各种单阶段抽样方法结合使用,通过多次随机抽样来实现的抽样方法。怎样称翡翠的重量 假设有一颗价值很高的翡翠,想用一架天平尽可能准确地称假设有一颗价值很高的翡翠,想用一架天平尽可能准确地称出它的重量有多少,通常天平总会有些误差。为得到更准确的结出它
17、的重量有多少,通常天平总会有些误差。为得到更准确的结果,可以在天平上重复称果,可以在天平上重复称5 5次,得到数据,这是含有误差的数据,次,得到数据,这是含有误差的数据,误差多大,由种种偶然性的因素(环境因素、人操作不当之类)误差多大,由种种偶然性的因素(环境因素、人操作不当之类)所决定,其值在各次称量时都可能不同,无法确知,但遵从一定所决定,其值在各次称量时都可能不同,无法确知,但遵从一定的概率规律。一般人使用的方法是取的概率规律。一般人使用的方法是取5 5次称量结果的平均值。一次称量结果的平均值。一般来讲,这比只称一次要准确,其实这正是统计学中常用的一个般来讲,这比只称一次要准确,其实这正
18、是统计学中常用的一个重要方法。重要方法。任务二整理与显示数据任务二整理与显示数据任务二整理与显示数据任务二整理与显示数据数据整理是根据调查研究的目的,运用科学的方法,对调查所获得的数据进行审查、检验,分类、汇总等初步加工,并以集中、简明的方式反映调查对象总体情况的过程。数据整理是数据研究的重要基础,是提高调查数据质量和使用价值的必要步骤,是保存数据的客观要求。任务二整理与显示数据任务二整理与显示数据数据的检查是指对所收集的数据的完整性和准确性进行检查。数据检查的目的是为了甄别出符合研究要求的有效数据,剔除无效数据的干扰和影响,为进一步的统计整理打好基础,从而提高统计分析结果的准确性。针对问卷调
19、查而言,数据检查的主要内容就是问卷的完整性和准确性。所谓数据的校订,是指根据研究目的和研究设计,对数据做进一步的补充和修正,以满足统计 研究的要求。任务二整理与显示数据任务二整理与显示数据 数据排序就是将数据按 照数值大小、类别等级等规则进行重新 排列。特别是当数据类型是定量数据,且数据的数量较为庞大时,通过数据排序更 有助于突出一些明显的特征和趋 势,并且可以为后面的分组、众数、中位数等统计计算提供便利。任务二整理与显示数据任务二整理与显示数据 数据分组是根据统计分析的需要,将 数据总体按照一定的分组标志,分成若干个组成部分。分组有助于显现数据的类别差异、结构情况或数量上的层次性,也有助于简
20、化后续的一些统计计算,是整理数据时被广泛采用的一种方法。任务二整理与显示数据任务二整理与显示数据任务二整理与显示数据任务二整理与显示数据数据分组是根据统计分析的需要,将数据总体按照一定的分组标志,分成若干个组成部分。分组有助于显现数据的类别差异、结构情况或数量上的层次性,也有助于简化后续的一些统计计算,是整理数据时被广泛采用的一种方法。对于定性数据,对于定性数据,可以根据统计分析可以根据统计分析的需要按照数据的的需要按照数据的类别或等级对数据类别或等级对数据进行分组。进行分组。任务二整理与显示数据任务二整理与显示数据1. 定性数据分组方法任务二整理与显示数据任务二整理与显示数据抽取某种产品10
21、0个,通过检验,有特等品20个、一等品49个、二等品28个、残次品3个。练习练习答案答案 分组方案一:将该数据按照表述中的等级分为四组,显示出具体的产品等级情况。 分组方案二:只考虑产品的合格率,也可以采用另一种分组形式,将其直接分为两组,即合格产品97个、残次品3个。 这两种分组方案各有其针对性,为更直观地显示其类别结构情况,可以采用饼图将这两种分组方案分别表示出来,如图下图所示。任务二整理与显示数据任务二整理与显示数据对定量数据进对定量数据进行分组的关键是确行分组的关键是确定组数、组距及组定组数、组距及组限。限。任务二整理与显示数据任务二整理与显示数据1. 定性数据分组方法任务二整理与显示
22、数据任务二整理与显示数据(1 1)组数。)组数。对于定量数据分组的组数不存在严格的规定,确定组数主要应参考数据的数量和集中程度。但组数既不宜过多也不宜过少,因为过多或过少都不便于观察数据的特征和规律。美国学者斯特奇斯(H.A.Sturges)提出了一个关于确定组数的经验公式:式中,K为组数;n为数据个数。任务二整理与显示数据任务二整理与显示数据(2 2)组距。)组距。组距可以由组数得到,组距用字母h表示:式中,K为组数;R为全距,是n个待分组数据中最大值与最小值的差。任务二整理与显示数据任务二整理与显示数据(3 3)组限。)组限。在确定了组距之后,就需要确定具体的组限,并进而确定最终的组数。组
23、限就是各个相邻组之间的具体分界值,也就是每一个组的两个端值。一个组取值范围的下限用字母L表示,上限用字母U表示。组限范围必须包含所有的数据值,即第一组的下限要小于或等于数据中的最小值,而最末组的上限则应大于或等于数据中的最大值。任务二整理与显示数据任务二整理与显示数据(4 4)组中值。)组中值。组中值是一个分组的上限和下限的中间值,即:对于开口组的组中值,通常是以其邻近组的组距来进行计算。即:分组数据频数柱形图任务二整理与显示数据任务二整理与显示数据一个组的组中值体现了该组数据的一个平均水平,可以作为一个标志值来近似代表整组数据的数值,可以用柱形图将每组数据的个数更加直观地表示出来:任务二整理
24、与显示数据任务二整理与显示数据常见的计算 方法有:1. 算术平均数2. 几何平均数3. 中位数4. 众数数据个数数据总和算数平均数任务二整理与显示数据任务二整理与显示数据1. 算术平均数任务二整理与显示数据任务二整理与显示数据(1 1)简单算术平均数。)简单算术平均数。对于未分组的n个数据x1,x2,x3,xn,其简单算术平均数的计算公式为:1任务二整理与显示数据任务二整理与显示数据(2 2)加权算术平均数。)加权算术平均数。当数据经过分组处理后,设其组数为n,各组的组中值依次为x1,x2,x3,xn,各组的频数依次为f1,f2,f3,fn,那么其加权算术平均数为:1nnxxxxG 321任务
25、二整理与显示数据任务二整理与显示数据2. 几何平均数21nxnMe为奇数时,当2122nnexxnM为偶数时,当任务二整理与显示数据任务二整理与显示数据3. 中位数dLM2110或dUM2120任务二整理与显示数据任务二整理与显示数据4. 众数 (1)当数据的分布状态基本对称时,算术平均数、众数和中位数三者的数值非常接近,甚至几乎相同。数据分布基本对称时,算术平均数、众数及 中位数的关系任务二整理与显示数据任务二整理与显示数据5. 算术平均数、众数及中位数的关系 (2)当数据的分布状态不对称时,算术平均数、众数和中位数则取值不同。数据分布呈正偏态时,算术平均数、众数及中位数的关系数据分布呈负偏
26、态时,算术平均数、众数及中位数的关系任务二整理与显示数据任务二整理与显示数据任务二整理与显示数据任务二整理与显示数据离散趋势也称离中趋势,用以表征数据离散的程度。对应于数据的集中趋势,用以度量数据离散趋势的常用方法包括对应于算术平均数的平均差、方差与标准差、离散系数,对应于中位数的四分位差,以及对应于众数的异众比率。任务二整理与显示数据任务二整理与显示数据2. 2. 方差与方差与标准差标准差3.3.离散系数离散系数4. 4. 四分位差四分位差5. 5. 异众比率异众比率1.1.平均差平均差离散趋势的离散趋势的 常用方法常用方法任务二整理与显示数据任务二整理与显示数据1. 平均差平均差是各个数据
27、与它们算术平均数的离差绝对值的算术平均数,用A.D.表示。其取值越大,也就表示数据的离散程度越大。对于未分组的数据,平均差的计算公式为:对于已分组的数据,可以采用加权平均差的计算公式:任务二整理与显示数据任务二整理与显示数据(1 1)方差与标准差的定义。)方差与标准差的定义。方差与标准差,是测度定量数据离散程度时最重要、最常用的统计指标。方差是各个数据与它们算术平均数的离差平方的平均数,通常用2表示。方差的算术平方根就是标准差,也称均方差,通常用表示。2. 方差与标准差任务二整理与显示数据任务二整理与显示数据(2 2) 总体方差与标准差。总体方差与标准差。首先对总体数据的方差与标准差进行计算。
28、总体容量记为N,则总体数据可以依次表示为X1,X2,X3,Xn,总体平均数记为X。那么,对于已分组及未分组的总体数据,方差和标准差的计算公式分别为(K为组数):任务二整理与显示数据任务二整理与显示数据未分组总体数据的方差:未分组总体数据的方差:任务二整理与显示数据任务二整理与显示数据已分组总体数据的方差:已分组总体数据的方差:任务二整理与显示数据任务二整理与显示数据未分组总体数据的标准未分组总体数据的标准差:差:任务二整理与显示数据任务二整理与显示数据已分组总体数据的标准已分组总体数据的标准差:差:任务二整理与显示数据任务二整理与显示数据(3 3) 样本方差与标准差。样本方差与标准差。样本方差
29、与总体方差在计算上存在着细微的区别:总体方差是用总体数据的个数去除离差平方和;而样本方差则是将样本数据个数先减去1,然后再去除离差平方和。任务二整理与显示数据任务二整理与显示数据为区别于总体方差和标准差,样本方差用s2表示,样本标准差用s表示。样本容量记为n,样本数据依次为x1,x2,x3,xn,样本平均数用x表示。所以对于已分组及未分组的样本数据,其方差和标准差的计算公式分别为(k为组数):任务二整理与显示数据任务二整理与显示数据未分组样本数据的方差:未分组样本数据的方差:任务二整理与显示数据任务二整理与显示数据已分组样本数据的方差:已分组样本数据的方差:任务二整理与显示数据任务二整理与显示
30、数据未分组样本数据的标准未分组样本数据的标准差:差:任务二整理与显示数据任务二整理与显示数据已分组样本数据的标准已分组样本数据的标准差:差:任务二整理与显示数据任务二整理与显示数据3. 离散系数(1 1)离散系数的含义。)离散系数的含义。其数值的大小一方面与数据值绝对量的整体水平有关,即当离散程度相当时,数据值绝对量的整体水平越高,其离散趋势的测度值自然也就越大,反之亦然;另一方面,其测度值的大小也与数据值的计量单位有关,当数据值采用不同的计量单位时,其离散趋势测度值的绝对量也就相应不同。任务二整理与显示数据任务二整理与显示数据离散系数,也称变异系数,就满足了这种要求,它消除了数据值绝对量水平
31、高低以及计量单位不同对考察离散程度相对水平的影响。离散系数是采用离差值与平均数的比值,通常用百分数表示。任务二整理与显示数据任务二整理与显示数据(2 2) 标准差系数及公式。标准差系数及公式。离散系数有多种计算方法,但最常用的是标准差系数。标准差系数就是数据的标准差与其相应的均值之比,公式为:式中,V为总体标准差系数;Vs为样本标准差系数。任务二整理与显示数据任务二整理与显示数据4. 四分位差四分位差是对应于中位数对集中趋势的刻画,用以描述数据离散程度的一种方法。类似于中位数选取在数列中间位置的数据值的思想,应用四分位差时,可以将数列进行四等分,选取位于四分之一和四分之三位置上的两个数据值,分
32、别记为Q1和Q3。那么四分位差就等于Q3减去Q1的差值,用QD(quartile deviation)表示,即:任务二整理与显示数据任务二整理与显示数据5. 异众比率对应于众数对数据集中趋势的测度,可以在此基础上用异众比率度量其数据的离散趋势。异众比率是非众数(组)的频数占总频数的比重,通常用Vr表示。其具体的计算公式为:式中,fm为众数(组)频数。任务三统计分析方法的应用任务三统计分析方法的应用 医院的新规定是否有帮助 对于新生儿的管理,国外过去传统的做法是让婴儿母亲看一眼新生婴儿后,就将婴儿放到单独的婴儿房间中去喂养,8小时后再放回母亲身边。为了研究新生儿出生后将孩子放在母亲身边是否会增进
33、日后母子的感情,研究人员从临产的孕妇中随机地抽出28个孕妇,进而随机地将其分成两组,每组14个孕妇。一组按传统方式,即前8小时单独喂养;另一组按试验方式,一直放在母亲身边。但在试验中要注意有两个随机性:一是28个孕妇应随机抽出,二是在将28个孕妇分出两组时也应保持随机,因为只有随机性才能避免试验结果的系统偏差并能够控制随机误差。 在婴儿成长的一段时间里,试验者要将这28个母亲每人的有关行为进行记录,如对于哭叫的婴儿是否立即抱起来及搂抱的时间长短,对于孩子定期体检和孩子生病的关心程度等。然后对每个母亲按其对孩子感情的由浅到深的程度打分。其中,0分是对孩子毫无感情,12分表示感情最深。经过整理得出
34、,新的试验方式得分较高,即婴儿出生后就放在母亲身边能加深母子感情。 要证实这一判断,可以用假设检验方法检验两个总体(两种方式)的均值是否相等。利用置信区间和假设检验的对偶性,即置信区间和假设检验是同一问题的两个方面,计算两个总体均值之差的95的置信区间。在试验中不难得到如下试验方式的得分数据值X1和对应的频数f1,如下表所示。得分数据值 X1 和对应的频数 f1任务三统计分析方法的应用任务三统计分析方法的应用 传统方式的得分数据值X2和相应的频数f2,如下表所示。1093. 9141391X任务三统计分析方法的应用任务三统计分析方法的应用 任务三统计分析方法的应用任务三统计分析方法的应用 利用
35、两个总体均值之差置信区间公式得到: 由于两种方式得分均值之差的95置信区间是(3.641.88,3.64+1.88)即(1.76,5.52),试验方式比起传统方式的得分要明显地多26分,说明两种方式的差异是明显的。另外,我们也可将(1.76,5.52)看成一个假设检验的区间,由于这个区间没有能够覆盖原假设 H0:120(两种方式无差别)的数值,因而不能接受原假设 120,可以认为 120。在该例子中12 是明显的。29. 614882X88. 164. 3)914. 0(06. 264. 321uu任务三统计分析方法的应用任务三统计分析方法的应用任务三统计分析方法的应用任务三统计分析方法的应用
36、上述这个试验是M.H.Klaus教授等在1972年发表的著名论文母爱(Maternal Attachment)中所做的。这个结论的可靠性取决于样本的随机性和代表性。显然,这个试验的样本(28个母亲)是不大可能从美国这一国家的全部孕妇中抽出的,而是从某一地区的孕妇中抽出的,那么这一地区的教育水平、生活收入等特点就会对试验结果产生影响。事实上,样本抽取地区的老百姓生活水平较低,许多家庭是依靠社会保障和社会救济生活的。由于这一样本的特殊性,那么是否对所有的美国妇女来说这一试验的结果都有效呢?即对于所有的妇女当新生婴儿出生后母子在一起能有益于母子感情的加深呢?其他的科学家也做过相似的试验,回答是肯定的
37、。但研究又发现,越是生活贫困的母亲,越希望新生婴儿能留在自己身边,所产生的母子感情越深厚,影响的时间越深远。这一研究成果的发表在20世纪70年代产生了较大的轰动和影响,许多医院的妇科病房都改进了婴儿喂养方式,从出生后就将孩子留在母亲身边,并一直延续至今,而证明这一试验的方法就是上述讨论的假设检验的统计方法。任务三统计分析方法的应用任务三统计分析方法的应用点估计也称定值估计,是指通过计算样本的参数值,估计对应整体参数的一个具体数值。例如,用袋装食品质量的样本平均数作为其总体平均质量的估计值。在点估计的各种方法中,最常见的有矩估计法和最大似然估计法。任务三统计分析方法的应用任务三统计分析方法的应用
38、 区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如,人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。区间估计的基本思想就是依照一定的概率保证程度,用样本统计量估计总体参数的取值范围。任务三统计分析方法的应用任务三统计分析方法的应用在区间估计中,一个重要的概念是置信度,也称置信水平或置信概率。置信度用1-表示,其中(01)代表一个较小的概率。将需要估计的总体参数记为,而L和U是由样本确定的两个统计量,如果对于给定的,满足:就称(L,U)是参数的置信度为1的置信区间。该区间的两个端
39、点L、U分别称为置信下限和置信上限。aPUL1商 店 选 址张先生是台湾某集团的企划部经理,在今年的规划中,集团准备在某地新建一家零售商店。张先生目前正在做这方面的准备工作。其中有一个项目便是进行市场调查。在众多信息中,经过该地的行人数量是要考虑的一个很重要的方面。张先生委托他人进行了两个星期的观察,得到每天经过该地人数如下:544,468,399,759,526,212,256,456,553,259,469,366,197,178。如果设立商店要求的最低行人数为520人,那么,根据观察到的上述数据,能否支持设店的决策呢?把14天经过该地的人数作为样本,商店开张后经过该地的人数作为总体。显然
40、,这是参数估计问题。根据样本数据,可计算得出样本均值为403人,样本标准差为168.48人。设置信度为95,则可估计出平均每天经过此地的人数,如下表所示。小小案案例例任务三统计分析方法的应用任务三统计分析方法的应用结果表明,在95的置信度下,行人数为306500人。这个结论意味着,如果要观察100天,则有95天的行人数位于这一区间内。那么如果设立商店要求行人数最低不低于520人,显然在这一地点建立商店是不明智的。小小案案例例任务三统计分析方法的应用任务三统计分析方法的应用行行 人人 数数单位数单位数n14COUNT(A A)544均值403AVERAGE(A A)468标准差168.46STD
41、EV(A A)399标准误差45.02D3/SQRT(D1)759置信度95%526t值2.16TINV(1D5,D11)212极限误差97.26D6D4256256估计下限305.74D2D7456估计上线500.26D2D7区间估计的结果区间估计的结果 1. 无偏性无偏性 2. 一致性一致性 3. 有效性有效性任务三统计分析方法的应用任务三统计分析方法的应用1. 无偏性任务三统计分析方法的应用任务三统计分析方法的应用无偏性的直观意义是没有系统性误差。虽然每个可能样本的估计值不一定恰好等于未知总体参数,但如果多次抽样,应该要求各个估计值的均值等于总体参数的均值,即从平均意义上看,估计量的估计
42、是没有偏差的。这一要求称为无偏性,如下图所示。一般来说,这是一个优良的估计量必须具备的性质。例如,样本均值x和样本比例p分别满足: 。,pExE任务三统计分析方法的应用任务三统计分析方法的应用有偏和无偏估计量示例任务三统计分析方法的应用任务三统计分析方法的应用按照无偏性的要求,样本标准差 是不能作为总体标准差的估计量的,因为它不满足无偏性的要求(证明从略)。可以证明,样本修正标准差 是总体标准差的无偏估计量。 nxxSini211211nxxSinin2. 一致性任务三统计分析方法的应用任务三统计分析方法的应用一致性要求用样本估计量估计和推断总体参数时要达到:样本容量n充分大时,样本估计量充分
43、靠近总体参数,即随着n的无限增大,样本估计量与未知的总体参数之间的绝对离差任意小的可能性趋于实际的必然性。根据概率论中的大数定律可知,当样本容量越来越大时,样本均值与总体均值的偏差小于任意给定的正数的可能性趋近于1的概率,即几乎是一定发生的。因此,样本估计量是总体参数的一致估计量,如下图所示。任务三统计分析方法的应用任务三统计分析方法的应用两个不同容量样本的样本统计量的抽样分布3. 有效性任务三统计分析方法的应用任务三统计分析方法的应用有效性要求样本估计量估计和推断总体参数时,作为估计量的标准差比其他估计量的标准差小。如果一个无偏估计量在所有无偏估计量中标准差最小,即:式中, 为任意一个无偏估
44、计量,则 是有效估计量,或称该估计量具有有效性。显然,如果某总体参数具有两个不同的无偏估计量,希望确定哪一个是更有效的估计量,应该选择标准差小的那个。估计量的标准差越小,推导出接近于总体参数估计的值的机会越大,如下图所示。 11任务三统计分析方法的应用任务三统计分析方法的应用两个无偏点估计量的抽样分布 1.2.3.4.5.建立假设选取适当的检验统计量确定显著性水平对检验统计量进行计算判断假设是否成立任务三统计分析方法的应用任务三统计分析方法的应用任务三统计分析方法的应用任务三统计分析方法的应用 根据显著性水平可以得到临界值,也就是将检验统计量的取值范围划分为接受区域和拒绝区域。拒绝区域表示检验
45、统计量小概率在其中取值的区域。根据实际问题不同,拒绝区域可能是在检验统计量分布的两端,也可能是在其分布的某一侧,这两种情形分别称为双侧检验和单侧检验。单侧检验依据拒绝区域是在左侧还是在右侧,可以分为左单侧检验和右单侧检验。 当需要分析的问题是总体平均数等参数是否发生了变化,而不必关心或区分它是变大或者变小时,就应该采用双侧检验。此时,原假设表述为等式,而备择假设是用“”符号表示的不等式。 (1) 做假设检验之前,应注意资料本身是否有可比性。 (2)当差别有统计学意义时,应注意这样的差别在实际应用中有无意义。 (3)根据资料类型和特点选用正确的假设检验方法。 (4)根据专业及经验确定是选用单侧检验还是双侧检验。任务三统计分析方法的应用任务三统计分析方法的应用任务三统计分析方法的应用任务三统计分析方法的应用 (6)判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。 (7)报告结论时应注意说明所用的统计量,检验的单双侧及P值的确切范围。 (5)当检验结果为拒绝无效假设时,应注意有发生类错误的可能性,即错误地拒绝了本身成立的 ,发生这种错误的可能性预先是知道的,即检验
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度车辆质押贷款合同模板5篇
- 二零二五版白酒市场调研与分析服务合同2篇
- 二零二五版便利店区域代理合作合同范本2篇
- 二零二五年度花卉市场花卉供货与品牌孵化服务合同3篇
- 二零二五年环境监测地形图测绘与污染防控合同3篇
- 二零二五版电影影视基地建设赞助合同3篇
- 2025版金融机构出纳人员现金担保责任合同范本3篇
- 二零二五年建材城商铺租赁合同环保及安全责任承诺书3篇
- 二零二五年度民间借贷合同管辖权变更协议3篇
- 二零二五年度房地产买卖居间合同模板(含税费缴纳)下载3篇
- 餐饮行业智慧餐厅管理系统方案
- EGD杀生剂剂化学品安全技术说明(MSDS)zj
- GB/T 12229-2005通用阀门碳素钢铸件技术条件
- 超分子化学-第三章 阴离子的络合主体
- 控制变量法教学课件
- 血压计保养记录表
- 食品的售后服务承诺书范本范文(通用3篇)
- 新外研版九年级上册(初三)英语全册教学课件PPT
- 初中中考英语总复习《代词动词连词数词》思维导图
- 植物和五行关系解说
- 因式分解法提公因式法公式法
评论
0/150
提交评论