




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、期权期货与其他衍生产品第九版课后习题与答案ChapterCHAPTER29InterestRateDerivatives:TheStandardMarketModelsPracticeQuestionsProblem29.1.Acompanycapsthree-monthLIBORat10%perannum.Theprincipalamountis$20million.Onaresetdate,three-monthLIBORis12%perannum.Whatpaymentwouldthisleadtounderthecap?Whenwouldthepaymentbemade?Anamoun
2、t20000000002025100000$,?.?.=,wouldbepaidout3monthslater.Problem29.2.Explainwhyaswapoptioncanberegardedasatypeofbondoption.Aswapoption(orswaption)isanoptiontoenterintoaninterestrateswapatacertaintimeinthefuturewithacertainfixedratebeingused.Aninterestrateswapcanberegardedastheexchangeofafixed-ratebon
3、dforafloating-ratebond.Aswaptionisthereforetheoptiontoexchangeafixed-ratebondforafloating-ratebond.Thefloating-ratebondwillbeworthitsfacevalueatthebeginningofthelifeoftheswap.Theswaptionisthereforeanoptiononafixed-ratebondwiththestrikepriceequaltothefacevalueofthebond.Problem29.3.UsetheBlacksmodelto
4、valueaone-yearEuropeanputoptionona10-yearbond.Assumethatthecurrentvalueofthebondis$125,thestrikepriceis$110,theone-yearrisk-freeinterestrateis10%perannum,thebondsforwardpricevolatilityis8%perannum,andthepresentvalueofthecouponstobepaidduringthelifeoftheoptionis$10.Inthiscase,0110(12510)12709Fe.?=-=.
5、,110K=,011(0)PTe-.?,=,008B(T=.,and10T=.21211n(12709110)(0082)1845600800817656ddd./+./=.=-.=.Fromequation(29.2)thevalueoftheputoptionis011011110(17656)12709(18456)012eNeN-.?-.?-.-.-.=.or$0,12.Problem29.4.Explaincarefullyhowyouwoulduse(a)spotvolatilitiesand(b)flatvolatilitiestovalueafive-yearcap.Whens
6、potvolatilitiesareusedtovalueacap,adifferentvolatilityisusedtovalueeachcaplet.Whenflatvolatilitiesareused,thesamevolatilityisusedtovalueeachcapletwithinagivencap.Spotvolatilitiesareafunctionofthematurityofthecaplet.Flatvolatilitiesareafunctionofthematurityofthecap.Problem29.5.Calculatethepriceofanop
7、tionthatcapsthethree-monthrate,startingin15monthstime,at13%(quotedwithquarterlycompounding)onaprincipalamountof$1,000.Theforwardinterestratefortheperiodinquestionis12%perannum(quotedwithquarterlycompounding),the18-monthrisk-freeinterestrate(continuouslycompounded)is11.5%perannum,andthevolatilityofth
8、eforwardrateis12%perannum.Inthiscase1000L=,025k5=.,012kF=.,013KR=.,0115r=.,012k卡.,125kt=.,1(0)08416kPt+,=.250kL游0.12JL252120529505295006637dd=.=-.-.=-.ThevalueoftheoptionisVL2525008416012(05295)013(06637)NN?.?.-.-.-.059=.or$0.59.Problem29.6.AbankusesBlacksmodeltopriceEuropeanbondoptions.Supposethata
9、nimpliedpricevolatilityfora5-yearoptiononabondmaturingin10yearsisusedtopricea9-yearoptiononthebond.Wouldyouexpecttheresultantpricetobetoohighortoolow?Explain.Theimpliedvolatilitymeasuresthestandarddeviationofthelogarithmofthebondpriceatthematurityoftheoptiondividedbythesquarerootofthetimetomaturity.
10、Inthecaseofafiveyearoptiononatenyearbond,thebondhasfiveyearsleftatoptionmaturity.Inthecaseofanineyearoptiononatenyearbondithasoneyearleft.Thestandarddeviationofaoneyearbondpriceobservedinnineyearscanbenormallybeexpectedtobeconsiderablylessthanthatofafiveyearbondpriceobservedinfiveyears.(SeeFigure29.
11、1.)Wewouldthereforeexpectthepricetobetoohigh.Problem29.7.Calculatethevalueofafour-yearEuropeancalloptiononbondthatwillmaturefiveyearsfromtodayusingBlacksmodel.Thefive-yearcashbondpriceis$105,thecashpriceofafour-yearbondwiththesamecouponis$102,thestrikepriceis$100,thefour-yearrisk-freeinterestrateis1
12、0%perannumwithcontinuouscompounding,andthevolatilityforthebondpriceinfouryearsis2%perannum.Thepresentvalueoftheprincipalinthefouryearbondis40110067032e-?.=.Thepresentvalueofthecouponsis,therefore,1026703234968-.=.Thismeansthattheforwardpriceofthefive-yearbondis401(10534968)104475e?.-.=.Theparameters
13、inBlacksmodelaretherefore104475BF=.,100K=,01r=.,4T=,and002B=.u0.02/212111144010744ddd=.=.=.ThepriceoftheEuropeancallis014104475(11144)100(10744)319eNN-.?.-.=.or$3.19.Problem29.8.Iftheyieldvolatilityforafive-yearputoptiononabondmaturingin10yearstimeisspecifiedas22%,howshouldtheoptionbevalued?Assumeth
14、at,basedontodaysinterestratesthemodifieddurationofthebondatthematurityoftheoptionwillbe4.2yearsandtheforwardyieldonthebondis7%.TheoptionshouldbevaluedusingBlacksmodelinequation(29.2)withthebondpricevolatilitybeing4202202202247.?.?.=.or6.47%.Problem29.9.Whatotherinstrumentisthesameasafive-yearzero-co
15、stcollarwherethestrikepriceofthecapequalsthestrikepriceofthefloor?Whatdoesthecommonstrikepriceequal?A5-yearzero-costcollarwherethestrikepriceofthecapequalsthestrikepriceoftheflooristhesameasaninterestrateswapagreementtoreceivefloatingandpayafixedrateequaltothestrikeprice.Thecommonstrikepriceistheswa
16、prate.Notethattheswapisactuallyaforwardswapthatexcludesthefirstexchange.(SeeBusinessSnapshot29.1)Problem29.10.Deriveaput-callparityrelationshipforEuropeanbondoptions.Therearetwowayofexpressingtheput-callparityrelationshipforbondoptions.Thefirstisintermsofbondprices:0RTcIKepB-+=+wherecisthepriceofaEu
17、ropeancalloption,pisthepriceofthecorrespondingEuropeanputoption,Iisthepresentvalueofthebondcouponpaymentsduringthelifeoftheoption,Kisthestrikeprice,Tisthetimetomaturity,0Bisthebondprice,andRistherisk-freeinterestrateforamaturityequaltothelifeoftheoptions.Toprovethiswecanconsidertwoportfolios.Thefirs
18、tconsistsofaEuropeanputoptionplusthebond;thesecondconsistsoftheEuropeancalloption,andanamountofcashequaltothepresentvalueofthecouponsplusthepresentvalueofthestrikeprice.Bothcanbeseentobeworththesameatthematurityoftheoptions.Thesecondwayofexpressingtheput-callparityrelationshipisRTRTBcKepFe-+=+whereB
19、Fistheforwardbondprice.Thiscanalsobeprovedbyconsideringtwoportfolios.ThefirstconsistsofaEuropeanputoptionplusaforwardcontractonthebondplusthepresentvalueoftheforwardprice;thesecondconsistsofaEuropeancalloptionplusthepresentvalueofthestrikeprice.Bothcanbeseentobeworththesameatthematurityoftheoptions.
20、Problem29.11.Deriveaput-callparityrelationshipforEuropeanswapoptions.Theput-callparityrelationshipforEuropeanswapoptionsis+=cVpwherecisthevalueofacalloptiontopayafixedrateofsandreceivefloating,pisKthevalueofaputoptiontoreceiveafixedrateofsandpayfloating,andVisthevalueKoftheforwardswapunderlyingthesw
21、apoptionwheresisreceivedandfloatingispaid.KThiscanbeprovedbyconsideringtwoportfolios.Thefirstconsistsoftheputoption;thesecondconsistsofthecalloptionandtheswap.Supposethattheactualswaprateatthes.ThecallwillbeexercisedandtheputwillnotbematurityoftheoptionsisgreaterthanKexercised.Bothportfoliosarethenw
22、orthzero.Supposenextthattheactualswaprateatthes.TheputoptionisexercisedandthecalloptionisnotmaturityoftheoptionsislessthanKsisreceivedandfloatingispaid.exercised.BothportfoliosareequivalenttoaswapwhereKInallstatesoftheworldthetwoportfoliosareworththesameattimeT.Theymustthereforebeworththesametoday.T
23、hisprovestheresult.Problem29.12.ExplainwhythereisanarbitrageopportunityiftheimpliedBlack(flat)volatilityofacapisdifferentfromthatofafloor.DothebrokerquotesinTable29.1presentanarbitrageopportunity?Supposethatthecapandfloorhavethesamestrikepriceandthesametimetomaturity.Thefollowingput-callparityrelati
24、onshipmusthold:+=capswapfloorwheretheswapisanagreementtoreceivethecaprateandpayfloatingoverthewholelifeofthecap/floor.IftheimpliedBlackvolatilitiesforthecapequalthoseforthefloor,theBlackformulasshowthatthisrelationshipholds.Inothercircumstancesitdoesnotholdandthereisanarbitrageopportunity.Thebrokerq
25、uotesinTable29.1donotpresentanarbitrageopportunitybecausethecapofferisalwayshigherthanthefloorbidandthefloorofferisalwayshigherthanthecapbid.Problem29.13.Whenabondspriceislognormalcanthebondsyieldbenegative?Explainyouranswer.Yes.Ifazero-couponbondpriceatsomefuturetimeislognormal,thereissomechancetha
26、tthepricewillbeabovepar.Thisinturnimpliesthattheyieldtomaturityonthebondisnegative.Problem29.14.WhatisthevalueofaEuropeanswapoptionthatgivestheholdertherighttoenterintoa3-yearannual-payswapinfouryearswhereafixedrateof5%ispaidandLIBORisreceived?Theswapprincipalis$10million.AssumethattheLIBOR/swapyiel
27、dcurveisusedfordiscountingandisflatat5%perannumwithannualcompoundingandthevolatilityoftheswaprateis20%.CompareyouranswertothatgivenbyDerivaGem.Nowsupposethatallswapratesare5%andallOISratesare4.7%.UseDerivaGemtocalculatetheLIBORzerocurveandtheswapoptionvalue?百Inequation(29.10),10000000L=,005Ks=.,0005
28、s=.,10202d=.=.,2.02-=d,and56711122404105105105A=+=.Thevalueoftheswapoption(inmillionsofdollars)is1022404005(02)005(02)0178NN?.-.-.=.ThisisthesameastheanswergivenbyDerivaGem.(ForthepurposesofusingtheDerivaGemsoftware,notethattheinterestrateis4.879%withcontinuouscompoundingforallmaturities.)WhenOISdis
29、countingisusedtheLIBORzerocurveisunaffectedbecauseLIBORswapratesarethesameforallmaturities.(ThiscanbeverifiedwiththeZeroCurveworksheetinDerivaGem).Theonlydifferenceisthat2790.2047.11047.11047.11765=+=Asothatthevalueischangedto0.181.ThisisalsothevaluegivenbyDerivaGem.(NotethattheOISrateis4.593%withan
30、nualcompounding.)Problem29.15.Supposethattheyield,R,onazero-couponbondfollowstheprocessdRdtdz=萨+whereand(TarefunctionsofRandt,anddzisaWienerprocess.UseItoslemmatoshowthatthevolatilityofthezero-couponbondpricedeclinestozeroasitapproachesmaturity.Thepriceofthebondattimetis()RTte-whereTisthetimewhenthe
31、bondmatures.UsingIt?slemmathevolatilityofthebondpriceis()()()RTtRTteTteR(T-?=-?ThistendstozeroastapproachesT.Problem29.16.CarryoutamanualcalculationtoverifytheoptionpricesinExample29.2.Thecashpriceofthebondis005050005100005100051044410012282ee生e-.?.-.?.-.?-.?+=.Asthereisnoaccruedinterestthisisalsoth
32、equotedpriceofthebond.Theinterestpaidduringthelifeoftheoptionhasapresentvalueof00505005100515005244441504eTheforwardpriceofthebondistherefore005225(122821504)12061e.?.-.=.Theyieldsemiannualcompoundingis5.0630%.Thedurationofthebondatoptionmaturity005025005775005775005025005075005775005775025477547751
33、00444100e/eee耳-.?.-.?.-.?.-.?.-.?.-.?.-.?.?+.?+.?+or5.994.modifieddurationis5.994/1.025315=5.846.Thebondpricevolatilityistherefore584600506300202292.?.?.=.WecanthereforevaluethebondoptionusingBlackmodelwith12061BF=.,005225(0225)08936P-.?.,.=.,592B%=.(T,and225T=.Whenthestrikepriceisthecashprice115K=a
34、ndthevalueoftheoptionis1.74. Whenthestrikepriceisthequotedprice117K=andthevalueoftheoptionis2.36.ThisisinagreementwithDerivaGem.Problem29.17.Supposethatthe1-year,2-year,3-year,4-yearswapratesforswapswithwithiseThe,seand5-yearLIBOR-for-fixedsemiannualpaymentsare6%,6.4%,6.7%,6.9%,and7%.Thepriceofa5-ye
35、arsemiannualcapwithaprincipalof$100atacaprateof8%is$3.UseDerivaGem(thezerorateandCap_and_swap_optworksheets)todetermine(a)The5-yearflatvolatilityforcapsandfloorswithLIBORdiscounting(b)Thefloorrateinazero-cost5-yearcollarwhenthecaprateis8%andLIBORdiscountingisused(c)Answer(a)and(b)ifOISdiscountingisu
36、sedandOISswapratesare100basispointsbelowLIBORswaprates.(a)FirstwecalculatetheLIBORzerocurveusingthezerocurveworksheetofDerivaGem.The1-,2-,3-,4-,and5_yearzerorateswithcontinuouscompoundingare5.9118%,6.3140%,6.6213%,6.8297%,and6.9328%,respectively.WethentransferthesetothechoosetheCapsandSwapOptionswor
37、ksheetandchooseCap/FloorastheUnderlyingType.WeenterSemiannualfortheSettlementFrequency,100forthePrincipal,0fortheStart(Years),5fortheEnd(Years),8%fortheCap/FloorRate,and$3forthePrice.WeselectBlack-EuropeanasthePricingModelandchoosetheCapbutton.WechecktheImplyVolatilityboxandCalculate.Theimpliedvolat
38、ilityis25.4%.(b)WethenuncheckImpliedVolatility,selectFloor,checkImplyBreakevenRate.Thefloorratethatiscalculatedis6.71%.Thisisthefloorrateforwhichthefloorisworth$3.Acollarwhenthefloorrateis6.61%andthecaprateis8%haszerocost.(c)ThezerocurveworksheetnowshowsthatLIBORzeroratesfor1-,2-,3-,4-,5-yearmaturit
39、iesare5.9118%,6.3117%,6.6166%,6.8227%,and6.9249%.TheOISzeroratesare4.9385%,5.3404%,5.6468%,5.8539%,and5.9566%,respectively.WhenthesearetransferredtothecapandswaptionworksheetandtheUseOISDiscountingboxischecked,theanswertoa)becomes24.81%andtheanswertob)becomes6.60%.Problem29.18.Showthat12VfV+=where1V
40、isthevalueofaswaptiontopayafixedrateofKsandreceiveLIBORbetweentimes1Tand2T,fisthevalueofaforwardswaptoreceiveafixedrateofKsandpayLIBORbetweentimes1Tand2T,and2VisthevalueofaswapoptiontoreceiveafixedrateofKsbetweentimes1Tand2T.Deducethat12VV=whenKsequalsthecurrentforwardswaprate.Weprovethisresultbycon
41、sideringtwoportfolios.ThefirstconsistsoftheswapoptiontoreceiveKs;thesecondconsistsoftheswapoptiontopayKsandtheforwardswap.SupposethattheactualswaprateatthematurityoftheoptionsisgreaterthanKs.TheswapoptiontopayKswillbeexercisedandtheswapoptiontoreceiveKswillnotbeexercised.Bothportfoliosarethenworthze
42、rosincetheswapoptiontopayKsisneutralizedbytheforwardswap.SupposenextthattheactualswaprateatthematurityoftheoptionsislessthanKs.TheswapoptiontoreceiveKsisexercisedandtheswapoptiontopayKsisnotexercised.BothportfoliosarethenequivalenttoaswapwhereKsisreceivedandfloatingispaid.Inallstatesoftheworldthetwo
43、portfoliosareworththesameattime1T.Theymustthereforebeworththesametoday.Thisprovestheresult.WhenKsequalsthecurrentforwardswaprate0f=and12VV=.Aswapoptiontopayfixedisthereforeworththesameasasimilarswapoptiontoreceivefixedwhenthefixedrateintheswapoptionistheforwardswaprate.Problem29.19.SupposethatLIBORz
44、eroratesareasinProblem29.17.UseDerivaGemtodeterminethevalueofanoptiontopayafixedrateof6%andreceiveLIBORonafive-yearswapstartinginoneyear.Assumethattheprincipalis$100million,paymentsareexchangedsemiannually,andtheswapratevolatilityis21%.UseLIBORdiscounting.WechoosetheCapsandSwapOptionsworksheetofDeri
45、vaGemandchooseSwapOptionastheUnderlyingType.Weenter100asthePrincipal,1astheStart(Years),6astheEnd(Years),6%astheSwapRate,andSemiannualastheSettlementFrequency.WechooseBlack-Europeanasthepricingmodel,enter21%astheVolatilityandcheckthePayFixedbutton.WedonotchecktheImplyBreakevenRateandImplyVolatilityb
46、oxes.Thevalueoftheswapoptionis5.63.Problem29.20.Describehowyouwould(a)calculatecapflatvolatilitiesfromcapspotvolatilitiesand(b)calculatecapspotvolatilitiesfromcapflatvolatilities.(a) Tocalculateflatvolatilitiesfromspotvolatilitieswechooseastrikerateandusethespotvolatilitiestocalculatecapletprices.We
47、thensumthecapletpricestoobtaincappricesandimplyflatvolatilitiesfromBlacksmodel.Theanswerisslightlydependentonthestrikepricechosen.Thisprocedureignoresanyvolatilitysmileincappricing.(b) Tocalculatespotvolatilitiesfromflatvolatilitiesthefirststepisusuallytointerpolatebetweentheflatvolatilitiessothatwe
48、haveaflatvolatilityforeachcapletpaymentdate.Wechooseastrikepriceandusetheflatvolatilitiestocalculatecapprices.Bysubtractingsuccessivecappricesweobtaincapletpricesfromwhichwecanimplyspotvolatilities.Theanswerisslightlydependentonthestrikepricechosen.Thisprocedurealsoignoresanyvolatilitysmileincapletp
49、ricing.FurtherQuestionsProblem29.21.Consideraneight-monthEuropeanputoptiononaTreasurybondthatcurrentlyhas14.25yearstomaturity.Thecurrentcashbondpriceis$910,theexercisepriceis$900,andthevolatilityforthebondpriceis10%perannum.Acouponof$35willbepaidbythebondinthreemonths.Therisk-freeinterestrateis8%for
50、allmaturitiesuptooneyear.UseBlacksmodeltodeterminethepriceoftheoption.Considerboththecasewherethestrikepricecorrespondstothecashpriceofthebondandthecasewhereitcorrespondstothequotedprice.Thepresentvalueofthecouponpaymentis008025353431e-.?.=.Equation(29.2)canthereforebeusedwith008812(9103431)92366BFe
51、.?/=-.=.,008r=.,010B卡.and06667T=.Whenthestrikepriceisacashprice,900K=andOJJO.666712103587002770ddd=.=.=.Theoptionpriceistherefore70.666700806667900(02770)87569(03587)1834eNN-.?.-.-.-.=.or$18,34.Whenthestrikepriceisaquotedprice5monthsofaccruedinterestmustbeaddedto900togetthecashstrikeprice.Thecashstr
52、ikepriceis900350833392917+?.=.Inthiscase(1M.666712100319001136ddd=.=-.=.andtheoptionpriceisVb-66670080666792917(01136)87569(00319)3122eNN-.?.-.=.or$31,22.Problem29.22.Calculatethepriceofacaponthe90-dayLIBORrateinninemonthstimewhentheprincipalamountis$1,000.UseBlacksmodelwithLIBORdiscountingandthefol
53、lowinginformation:(a) Thequotednine-monthEurodollarfuturesprice=92. (Ignoredifferencesbetweenfuturesandforwardrates.)(b) Theinterest-ratevolatilityimpliedbyanine-monthEurodollaroption=15%perannum.(c) Thecurrent12-monthrisk-freeinterestratewithcontinuouscompounding=7.5%perannum.(d) Thecaprate=8%peran
54、num.(Assumeanactual/360daycount.)Thequotedfuturespricecorrespondstoaforwardrateof8%perannumwithquarterlycompoundingandactual/360.TheparametersforBlacksmodelaretherefore:008kF=.,008K=.,0075R=.,015k卡.,075kt=.,and007511(0)09277kPte-.?+,=.0.15/7521220225000650dd=.=-.andthecallprice,c,isgivenby0.15血75-02
55、5100009277008(00650)008(00650)096c=?-=,Problem29.23.SupposethattheLIBORyieldcurveisflatat8%withannualcompounding.Aswaptiongivestheholdertherighttoreceive7.6%inafive-yearswapstartinginfouryears.Paymentsaremadeannually.Thevolatilityoftheforwardswaprateis25%perannumandtheprincipalis$1million.UseBlacksm
56、odeltopricetheswaptionwithLIBORdiscounting.CompareyouranswertothatgivenbyDerivaGem.Thepayofffromtheswaptionisaseriesoffivecashflowsequaltomax00760Ts.-,inmillionsofdollarswhereTsisthefive-yearswaprateinfouryears.Thevalueofanannuitythatprovides$1peryearattheendofyears5,6,7,8,and9is95129348108ii=.EThev
57、alueoftheswaptioninmillionsofdollarsistherefore21293480076()008()NdNd.-.where2103526d=.and“25班2202274d=-.Thevalueoftheswaptionis293480076(01474)008(03526)003955NN.-.-.=.or$39,550.ThisisthesameanswerasthatgivenbyDerivaGem.NotethatforthepurposesofusingDerivaGemthezerorateis7.696%continuouslycompounded
58、forallmaturities.Problem29.24.UsetheDerivaGemsoftwaretovalueafive-yearcollarthatguaranteesthatthemaximumandminimuminterestratesonaLIBOR-basedloan(withquarterlyresets)are7%and5%respectively.TheLIBORandOISzerocurvesarecurrentlyflatat6%and5.8%respectively(withcontinuouscompounding).Useaflatvolatilityof20%.Assumethattheprincipalis$100.UseOISdiscountingWeusetheCapsandSwapOpti
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5-12序列信号发生器2-m序列信号发生器的分析
- 1-7码制-BCD的加减法运算
- 2025年北京海淀区中考一模英语试卷试题(含答案详解)
- 食品企业产品检验管理制度
- 上海行健职业学院《创新创业基础(社会实践)》2023-2024学年第二学期期末试卷
- 天津渤海职业技术学院《能源与环境》2023-2024学年第二学期期末试卷
- 四川省射洪县2024-2025学年初三下学期第一次联合模拟考试数学试题含解析
- 国开2025年《汉语通论》形成性考核1-4答案
- 江苏省无锡江阴市要塞片2025届初三第一次模拟(5月)物理试题含解析
- 江汉大学《试验设计方法》2023-2024学年第一学期期末试卷
- 交通事故赔偿起诉状范例合集
- JT∕T1180.4-2018交通运输企业安全生产标准化建设基本规范第4部分:道路普货运输
- 《再别康桥》 统编版高中语文选择性必修下册
- 2024年郑州铁路职业技术学院单招职业适应性测试题库必考题
- 广东省汕头市金平区2023-2024学年九年级下学期一模英语试卷
- 预制箱梁施工质量保证措施
- 建筑防水工程技术规程DBJ-T 15-19-2020
- 生产节拍计算表格
- 光伏项目节前安全教育
- 中职学校高二上学期期末考试语文试题(含答案)
- 胰腺炎的中医特色护理
评论
0/150
提交评论