版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数与几何综合类二次函数与几何综合类存在性问题存在性问题 二次函数与三角形、四边形和相似三角形常常综合在二次函数与三角形、四边形和相似三角形常常综合在一起运用,解决这类问题需要用到一起运用,解决这类问题需要用到数形结合数形结合思想,把思想,把“数数”与与“形形”结合起来,互相渗透存在探索型问题是指在给结合起来,互相渗透存在探索型问题是指在给定条件下,判断定条件下,判断某种数学现象是否存在某种数学现象是否存在、某个结论是否出某个结论是否出现现的问题解决这类问题的一般思路是先的问题解决这类问题的一般思路是先假设假设结论的某一结论的某一方面方面存在存在,然后在这个假设下进行,然后在这个假设下进行
2、演绎推理演绎推理,若推出矛盾,若推出矛盾,即可否定假设;若推出合理结论,则可肯定假设即可否定假设;若推出合理结论,则可肯定假设 考向互动探究考向互动探究探究一二次函数与三角形的结合探究一二次函数与三角形的结合 例例12013重庆重庆如图如图1,对称轴为直线,对称轴为直线x1的抛物线的抛物线yax2bxc(a0)与与x轴的交点为轴的交点为A、B两点,其中点两点,其中点A的坐标的坐标为为(3,0)(1)求点求点B的坐标;的坐标;(2)已知已知a1,C为抛物线与为抛物线与y轴的交点轴的交点若点若点P在抛物线上,且在抛物线上,且SPOC4SBOC,求点求点P的坐标;的坐标;设点设点Q是线段是线段AC上
3、的动点,作上的动点,作QDx轴交抛物线于点轴交抛物线于点D,求线段,求线段QD长度的最大值长度的最大值图图1例题分层分析例题分层分析 (1)抛物线的解析式未知,不能通过解方抛物线的解析式未知,不能通过解方程的方法确定点程的方法确定点B的坐标,根据二次函数的的坐标,根据二次函数的对称性,能求出对称性,能求出B点的坐标吗?点的坐标吗? (2)要求抛物线解析式应具备哪些条件?要求抛物线解析式应具备哪些条件?由由a1,A(3,0),B(1,0)三个条件试一三个条件试一试;试; (3)根据根据SPOC4SBOC列出关于列出关于x的方程,的方程,解方程求出解方程求出x的值;的值; (4)如何用待定系数法求
4、出直线如何用待定系数法求出直线AC的解析的解析式?式? (5)D点的坐标怎么用点的坐标怎么用x来表示?来表示? (6)QD怎样用含怎样用含x的代数式来表示?的代数式来表示? (7)QD与与x的函数关系如何?是二次函数的函数关系如何?是二次函数吗?如何求出最大值?吗?如何求出最大值?解:(1)由题意知:点 A 与点 B 关于直线 x1 对称,A(3,0),B(1,0)(2)当 a1 时,则 b2,把 A(3,0)(3)代入 yx22xc 中得 c3,该抛物线解析式为 yx22x3.SBOC12OBOC121332,SPOC4SBOC4326.又 SPOC12OC|xp|6,|xp|4,xp4.当
5、 xp4 时,yp4224321;当 xp4 时,yp(4)22(4)35.点 P 的坐标为(4,21)或(4,5)A(3,0),C(0,3),则直线 AC 的解析式为 yx3.设点 Q 为(a,a3),点 D 为(a,a22a3),QDyQyDa3(a22a3)a23a.当 a32(1)32时,QD 有最大值,其最大值为:322332 94.解题方法点析解题方法点析以二次函数、三角形为背景的有关以二次函数、三角形为背景的有关点存在性问题点存在性问题是以是以二次函数的图象和解析式为背景,二次函数的图象和解析式为背景,判断三角形满足某些的判断三角形满足某些的条件时,点是否存在的问题条件时,点是否
6、存在的问题,这类问题有点的对称点、线,这类问题有点的对称点、线段、三角形等类型之分这类试题集代数、几何知识于一段、三角形等类型之分这类试题集代数、几何知识于一体,数形结合,灵活多变体,数形结合,灵活多变 (中考中考.广安广安)如图,已知抛物线如图,已知抛物线y=x2+2x+3交交x轴于轴于A、B两两点(点点(点A在点在点B的左侧),与的左侧),与y轴交于点轴交于点C。(1)求点)求点A、B、C的坐标。的坐标。(2)若点)若点M为抛物线的顶点,连接为抛物线的顶点,连接BC、CM、BM,求,求BCM的面积。的面积。(3)连接)连接AC,在,在x轴上是否存在点轴上是否存在点P使使ACP为等腰三角为等
7、腰三角形,若存在,请求出点形,若存在,请求出点P的坐标;若不存在,请说明理由的坐标;若不存在,请说明理由。 探究二二次函数与四边形的结合探究二二次函数与四边形的结合 例例22013枣庄枣庄 如图如图2,在平面直角坐标系中,二次函,在平面直角坐标系中,二次函数数yx2bxc的图象与的图象与x轴交于轴交于A、B两点,两点,B点的坐标为点的坐标为(3,0),与,与y轴交于轴交于C(0,3),点,点P是直线是直线BC下方抛物线上下方抛物线上的动点的动点(1)求这个二次函数的解析式;求这个二次函数的解析式;(2)连接连接PO、PC,并将,并将POC沿沿y轴对折,得到四边形轴对折,得到四边形POPC,那么
8、是否存在点,那么是否存在点P,使得四边形,使得四边形POPC为菱形?若为菱形?若存在,求出此时点存在,求出此时点P的坐标;若不的坐标;若不存在,请说明理由;存在,请说明理由;(3)当点当点P运动到什么位置时,四运动到什么位置时,四边形边形ABPC的面积最大?求出此时的面积最大?求出此时P点点的坐标和四边形的坐标和四边形ABPC的最大面积的最大面积例题分层分析例题分层分析(1)图中已知抛物线上几个点?图中已知抛物线上几个点?将将B、C的坐标代入求抛物线的解析式;的坐标代入求抛物线的解析式;(2)画出四边形画出四边形POPC,若四边形,若四边形POPC为菱形,那么为菱形,那么P点点必在必在OC的垂
9、直平分线上,由此能求出的垂直平分线上,由此能求出P点坐标吗?点坐标吗?(3)由于由于ABC的面积为定值,求四边形的面积为定值,求四边形ABPC的最大面的最大面积,即求积,即求BPC的最大面积的最大面积解:(1)将 B、C 两点的坐标代入 yx2bxc,得93bc0,c3,解得b2,c3.这个二次函数的解析式为 yx22x3.(2)假设抛物线上存在点 P(x,x22x3),使得四边形 POPC 为菱形连接 PP交 CO 于点 E.四边形 POPC 为菱形,PCPO,PECO,OEEC32,P 点的纵坐标为32,即 x22x332,解得 x12 102,x22 102(不合题意,舍去)存在点 P(
10、2 102,32),使得四边形 POPC 为菱形(3)过点 P 作 y 轴的平行线交 BC 于点 Q,交 OB 于点 F,设 P(x,x22x3)由 x22x30 得点 A 的坐标为(1,0)B 点的坐标为(3,0),C 点的坐标为(0,3),直线BC 的解析式为:yx3,Q 点的坐标为(x,x3),AB4,CO3,BO3,PQx2+3x.S四边形ABPCSABCSBPQSCPQ12AB CO12PQBF12PQFO12ABCO12PQ(BFFO)12ABCO12PQBO124312(x23x)332x292x632x322758.当 x32时,四边形 ABPC的面积最大此时 P 点的坐标为3
11、2,154 ,四边形 ABPC 的最大面积为758.解题方法点析解题方法点析求四边形面积的函数关系式,一般是利用求四边形面积的函数关系式,一般是利用割补法割补法把四把四边形面积转化为三角形面积的和或差边形面积转化为三角形面积的和或差(2010黔东南州)黔东南州)如图如图,在平面直角坐标系中在平面直角坐标系中RtAOB RtCDA,且且A(-1,0),),B(0,2)抛物线抛物线y=ax2+ax-2经过点经过点C(1)求抛物线的解析式求抛物线的解析式;(2)在抛物线在抛物线(对称轴的右侧对称轴的右侧)上是否存在两点上是否存在两点P、Q,使四边形使四边形ABPQ为正方形为正方形?若存在若存在,求点
12、求点P、Q的坐标的坐标;若若不存在不存在,请说明理请说明理由由 探究三二次函数与相似三角形的结合探究三二次函数与相似三角形的结合 例例32013凉山凉山如图如图3,抛物线,抛物线yax22axc(a0)交交x轴于轴于A、B两点,两点,A点坐标为点坐标为(3,0),与,与y轴交于点轴交于点C(0,4),以,以OC、OA为边作矩形为边作矩形OADC交抛物线于点交抛物线于点G.(1)求抛物线的解析式;求抛物线的解析式;(2)抛物线的对称轴抛物线的对称轴l在边在边OA(不包括不包括O、A两点两点)上平行移动,分别交上平行移动,分别交x轴于点轴于点E,交,交CD于点于点F,交,交AC于点于点M,交抛物线
13、于点,交抛物线于点P,若点,若点M的横坐的横坐标为标为m,请用含,请用含m的代数式表示的代数式表示PM的长;的长; (3)在在(2)的条件下,连接的条件下,连接PC,则在,则在CD上方的上方的抛物线部分是否存在这样的点抛物线部分是否存在这样的点P,使得以,使得以P、C、F为顶点的三角形和为顶点的三角形和AEM相似?若存在,求出相似?若存在,求出此时此时m的值,并直接判断的值,并直接判断PCM的形状;若不存的形状;若不存在,请说明理由在,请说明理由图图3例题分层分析例题分层分析 (1)将将_代入代入yax22axc,求出抛物线的,求出抛物线的解析式;解析式;(2)根据根据_的坐标,用待定系数法求
14、出直线的坐标,用待定系数法求出直线AC的的解析式;解析式;(3)根据抛物线和直线根据抛物线和直线AC的解析式如何表示出点的解析式如何表示出点P、点、点M的坐标和的坐标和PM的长?的长?(4)由于由于PFC和和AEM都是直角,都是直角,F和和E对应,则若以对应,则若以P、C、F为顶点的三角形和为顶点的三角形和AEM相似时,分两种情况进行讨相似时,分两种情况进行讨论:论:PFC_,PFC_解:(1)C(0,4),A(3,0)在抛物线 yax22axc(a0)上,c4,9a6ac0,解得a43,c4.所求抛物线的解析式为 y43x283x4.(2)设直线 AC 的解析式为 ykxb(k0),A(3,
15、0),C(0,4)在直线 AC 上,3kb0,b4,解得k43,b4.直线 AC 的解析式为 y43x4,Mm,43m4,Pm,43m283m4.点 P 在 M 的上方,PM43m283m443m443m283m443m443m24m.(3)若PFCAEM,此时PCM 是直角三角形且PCM90.则PFAECFME,即PFCFAEME.又AEMAOC,AEAOMECO,即AEMEAOCO,PFCFAOCO34.PFPEEF43m283m4443m283m,CFOEm,43m283mm34.m0,m2316.若PFCMEA,此时PCM 是等腰三角形且 PCCM.则PFMEFCEA,即PFFCMEE
16、A.由得AOCOAEME34,OCOA43,PFFCOCOA43.同理,PF43m283m,CFOEm,43m283mm43.m0,m1.综上可得,存在这样的点 P 使以 P、C、F 为顶点的三角形与AEM 相似,此时 m 的值为2316或 1,PCM 为直角三角形或等腰三角形解题方法点析解题方法点析此类问题常涉及运用待定系数法求二次函数、一次函此类问题常涉及运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定要注意的是当角三角形、等腰三角形的判定要注意的是当相似三角形相似三角形的对应边和对应角不明确的对应边和对应角不明确时,要时,要分类讨论分类讨论,以免漏解,以免漏解 (2011枣庄)如图,在平面直角坐标系xoy中,抛物线y=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版垫资赎楼业务风险控制合同2篇
- 2024电商技术服务合同3篇
- 2024年版市区高级公寓租赁合同版B版
- 2025年度玩具OEM贴牌加工安全标准合同3篇
- 2025年房屋贷款延期合同3篇
- 二零二五年度火锅店餐饮服务承包合同范本2篇
- 二零二五年度跨境电商产业园房地产收购合同3篇
- 2024版打胶合同书
- 二零二五年度智能机器人OEM委托研发与市场拓展合同
- 西南科技大学《西方音乐史(二)》2023-2024学年第一学期期末试卷
- 2025年工程合作协议书
- 2025年山东省东营市东营区融媒体中心招聘全媒体采编播专业技术人员10人历年高频重点提升(共500题)附带答案详解
- 2025年宜宾人才限公司招聘高频重点提升(共500题)附带答案详解
- 电袋复合除尘器工艺说明
- 六年级下册第四单元语文园地-语文园地四-学习任务单
- 《新闻采访写作》课程思政优秀教学案例(一等奖)
- 竣工验收程序流程图
- 清华经管工商管理硕士研究生培养计划
- 口腔科诊断证明书模板
- 管沟挖槽土方计算公式
- 国网浙江省电力公司住宅工程配电设计技术规定
评论
0/150
提交评论