动量与动量守恒定律全章典型习题精讲_第1页
动量与动量守恒定律全章典型习题精讲_第2页
动量与动量守恒定律全章典型习题精讲_第3页
动量与动量守恒定律全章典型习题精讲_第4页
动量与动量守恒定律全章典型习题精讲_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、动量及动量守恒定律全章典型习题精讲一.学法指导:动量这局部内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算.这局部内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这局部

2、内容与机械能局部联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的.1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比拟如下:(1)冲量和功,都是“力的,要注意是哪个力的冲量,哪个力做的功.动量和动能,都是“物体的,要注意是哪个物体的动量、哪个物体的动能.(2)冲量和功,都是“过程量,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功.动量和动能,都是“状态量,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系,它们说的是在某段

3、过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量又叫“变化量,是相应过程的“始、“末两个状态量的差值,表示的还是某一段过程的状态的变化止匕外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的.2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:定律碧称财象条件结论实康中量守恒定律系统不第卜力作用总动里寸恒两个物悻的动量变化大小相等、力向相反机械能守恒定律物体只而重力做功机械能守恒物体的重

4、力势能的减少等干动能的增加系统没有外力做功,内力中没有滑动摩擦力等做功系统的总机械能守恒系统的势能的减少等手功能的增 to3.几点说明:(1).对于动量守恒定律,“系统指的是相互作用的物体组成的系统,系统内的物体数量可以多于两个,但我们中学阶段多数情况下只物体组成的系统,在“实质一栏中就是以两个物体组成的系统为例的.对于机械能守恒定律,我们课本上写的是“在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变.这里讨论的对象是“物体.但我们实际遇到的问题,包括很多试题,都涉及到几个物体组成的系统,因此我们在表格里把机械能守恒定律列成两行,即对物体的机械能守恒和对系统的机

5、械能守恒.在系统的机械能守恒问题中,系统内的物体要发生相互作用,有内力做功,但只要内力中没有滑动摩擦力等能使机械能向其他形式能量转化的力做功,系统的总机械能的总量就会保持不变,而内力做功的结果,是使机械能从系统内的一个物体转移到另一个物体2系统在不受外力作用的情形下,总动量守恒,这与牛顿第三定律有密切的联系牛顿第三定律指出相互作用的两物体间的作用力与反作用力总是大小相等、方向相反,而且它们的作用时间总是相等,因此这两物体受到的力的冲量大小相等、方向相反,又根据动量定理,两物体的动量的变化量大小相等、方向相反在满足不受外力的条件时,该系统的总动量保持不变,这就是动量守恒相互作用的两物体间的作用力

6、与反作用力虽然总是大小相等、方向相反,但它们对两物体所做的功却不一定绝对值相等,这是由于两物体的位移不一定相等以摩擦力为例说明问题:对于一对静摩擦力,由于两物体间没有相对运动位移数值一定是相等的,从而这一对静摩擦力对两物体做的功的代数和一定为零,这种情况下,有机械能从一个物体向另一个物体转移,但机械能的总量仍保持不变但对于一对滑动摩擦力,由于两物体间的有相对运动,从而二者的位移数值不相等,一对滑动摩擦力做功的代数一定为负值,这表示有机械能向内能的转化,即平时所说的“摩擦生热,这样系统的机械能就不守恒了二例题分析【例1】一质量为 100g100g 的小球从 0.80m0.80m 高处自由下落到一

7、厚软垫上假设从小球接触软垫到小球陷至最低点经历了 0.2s0.2s,那么这段时间内软垫对小球的冲量为取,不计空气阻力【分析与解】小球从高处自由下落到软垫陷至最低点经历了两个过程,从高处自由下落到接触软垫前一瞬间,是自由下落过程,接触软垫前一瞬间速度由:求出= =接触软垫时受到软垫向上作用力N和重力G= =mg作用,规定向下为正,由动量定理:故有:在重物与地面撞击问题中,是否考虑重力,取决于相互作用力与重力大小的比拟,此题中N=0.3N,mg=0.1N,显然在同一数量级上,不可忽略假设二者不在同一数量级,相差极大,那么可考虑忽略不计实际上从同一高度下落,往往要看撞击时间是否极短,越短冲击力越大.

8、【例2】一粒钢珠从静止状态开始自由下落,然后陷入泥潭中假设把在空中下落的过程称为过程I,进入泥潭直到停住的过程称为过程II,那么:A、过程I中钢珠动量的改变量等于重力的冲量B、过程II中阻力的冲量的大小等于过程I中重力冲量的大小C、过程II中钢珠克服阻力所做的功等于过程I与过程II中钢珠所减少的重力势能之和D、过程II中损失的机械能等于过程I中钢珠所增加的动能【分析与解】钢珠在过程I中只受重力,所以由动量定理可判断A正确过程I中动量的增加量与过程II中的动量减少量大小相等,而过程II中的动量变化量应等于在这个过程中钢珠所受合力阻力和重力的冲量,所以B选项错误由于全过程中,钢珠的动能变化量为零,

9、所以重力在全过程中所做正功与阻力在过程II中所做负功大小相等,故C选项正确过程II中损失的机械能应等于过程II中阻力所做的功,结合C选项的分析,可知D错误通过此题,应注意理解动量定理和动能定理两个定理的物理意义,理解物体运动的过程中,状态量动量、动能的变化与过程量冲量、功的对应关系,必要时画出过程草图,帮助思考.【例3】如下图的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短现将子弹、木块和弹簧合在一起作为研究对象系统,那么此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:A A、动量守恒、机械能守恒B B、动量不守恒、机械能不守恒C C、

10、动量守恒、机械能不守恒D D、动量不守恒、机械能守恒【分析与解】假设以子弹、木块和弹簧合在一起作为研究对象系统,从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒而在子弹射入木块时,存在剧烈摩擦作用,有一局部能量将转化为内能,机械能也不守恒实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统那么可认为动量守恒此瞬间弹簧尚未形变子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件【例4】在质量为 M M 的小车中挂有一单摆,摆球

11、的质量为小车和单摆以恒定的速度v v 沿光滑水平地面运动,与位于正对面的质量为 m m 的静止木块发生碰撞,碰撞的时间极短在此碰撞过程中,以下哪个或哪些说法是可能发生的A A、小车、木块、摆球的速度都发生变化,分别为、,满足:B B、摆球的速度不变,小车和木块的速度变和,满足:C C、摆球的速度不变,小车和木块的速度都变为 v,v,满足D D、小车和摆球的速度都变为,木块的速度变为,满足【分析与解】此题首先应注意理解系统与过程前后时刻的选取关系,由于碰撞过程是在极短时间内发生的,因摆球的摆线在碰撞之前是竖直的,可以不考虑在这个极短时间内摆球与小车在水平方向上的相互作用这与例3中子弹射入木块瞬间

12、可不考虑弹簧形变类似,而只需考虑小车与木块的相互作用力,因此选择小车与木块为系统动量守恒其次,应注意理解碰撞可能出现的情况即在此题中小车与木块碰撞可能出现结合在一起或别离两种情况因而B、C两种情况均有可能,B、C正确【例5】质量为M的小船以速度行驶,船上有两个质量均为m的小孩和b分别静止站在船头和船尾现小孩沿水平方向以速率相对于静止水面向前跃入水中,然后小孩b沿水平方向以同一速率相对于静止水面向后跃入水中求小孩b跃出后小船的速度【分析与解】在本问题中,研究对象即系统和过程有两种方法,第一种方法分为两个过程,是先取小孩和小船及小孩b为系统,因水平方向无外力,水平方向动量守恒规定方向为正,并设小孩

13、向前跃入水中后小船的速度为,有:再取小孩b和小船为系统,同样因水平方向无外力,水平方向动量守恒并设小孩b向后跃入水中后小船的速度为有:两式联立,消去,有:解出:第二种方法是直接取小孩、小孩b和小船为系统,因水平方向始终无外力,水平方向动量守恒规定方向为正,并设小孩向前跃入水中后小船的速度为,把小孩向前跃入水中至小孩b向后跃入水中选作过程的初态与末态,那么可直接列出:解出解答那么简捷得多在实际问题中,应体会这种方法【例6】向空中发射一物体,不计空气阻力当此物体的速度恰好沿水平方向时,物体炸不变,故判断共同速度的方向在甲的原运动方向上.设:甲推出箱子前的运动方向为正裂成、b b 两块,假设质量较大

14、的块的速度方向仍沿原来的方向,那么:A A、b b 的速度方向一定与原速度方向相反B B、从炸裂到落地的这段时间里,飞行的水平距离一定比 b b 的大C C、b b 一定同时到达水平地面D D、在炸裂过程中,、b b 受到的爆炸力的冲量大小一定相等【分析与解】当物体速度方向为水平时,物体炸裂.其中较大质量的块仍沿原来方向飞行,因水平方向无外力,可知水平方向动量守恒,爆炸瞬间相互作用力方向也是水平的,对块,爆炸作用力方向沿原方向,故块速度将比原来速度大,动量增加.而 b b 块受爆炸作用力方向应与原方向相反,b b 块动量将减少.因爆炸过程中两块间作用与反作用等值反向,故受到冲量大小是相等的,D

15、 D 正确.由于两块在同一高度水平飞行,无论初速大小,下落高度相同,由平抛规律,下落时间相同,故 C C 也正确.题中未给出爆炸前后具体数据,对 b b 块而言,虽然受到冲量方向与原速度方向相反,但有三种可能性,一是速度减少,仍沿原方向飞行;二是速度恰好变为零;三是沿反方向飞行,因此 A A 不正确.因质量大于 b,b,又两者爆炸时所受冲量大小相同,动量变化量大小也相同,可知 b b 的速度变化量必大于,因此 b b 的末速度有可能比还大但沿反方向.所以 B B 也不正确.此题要求对动量守恒的本质即相互作用过程有较深刻的理解.【例【例7】如下图,甲、乙两小孩各坐一辆冰车在摩擦不计的冰面上相向运

16、动,甲连同冰车的总质量M=30kg=30kg,乙连同冰车的总质量也是M=30kg=30kg,甲还推着一只质量m=15kg=15kg的箱子.甲、乙滑行的速度大小均为 2m/s2m/s,为了防止相撞,在某时刻甲将箱子沿冰面推给乙,箱子滑到乙处时被乙接住.试求:甲至少用多大的速度相对于地面将箱子推出,才可防止和乙相撞?甲在推出时对箱子做了多少功?【分析与解】甲推出箱子可使自己减速,而乙接住箱子,也可使其自己减速,甚至反向运动.假设甲、乙刚好不相撞,条件应是在乙接住箱子后,甲、乙包括有 f f 子的速度相同.根据动量守恒定律,我们先做定性分析:选甲、乙、箱子为系统,由于甲推出箱子前,系统的总动量的方向

17、与甲的运动方向相同,所以在到达共同速度时,系统的总动量方向应不变,故判断共同速度的方向在甲的原运动方向上.设:甲推出箱子前的运动方向为正方向,甲、乙初速度大小为,甲、乙、箱子后来的共同速度为,根据动量守律:【分析与解】甲推出箱子可使自己减速,而乙接住箱子,也可使其自己减速,甚至反向运动.假设甲、乙刚好不相撞,条件应是在乙接住箱子后,甲、乙包括多!子的速度相同.根据动量守恒定律,我们先做定性分析:选甲、乙、箱子为系统,由于甲推出箱子前,系统的总动量的方向与甲的运动方向相同,所以在到达共同速度时,系统的总动量方向应方向,甲、乙初速度大小为,甲、乙、箱子后来的共同速度为,根据动量守律,可求出=0.4

18、m/s;再以甲与箱子为研究对象,甲推出箱子的过程中动量守恒,设箱子被推出后的速度为,可求出被推出后箱子的速度为.由动能定理,甲推出箱子的过程对箱子做功等于箱子动能的增加量J在此题中,对甲、乙不相撞的条件的分析,是解决问题的关键而在具体的求解过程中,如何选择研究对象和过程始末去运用动量守恒定律,可以有不同的方式,例如,先选甲和箱子为系统,再选箱子和乙为系统也可解出,但要麻烦一些,不妨试一试,作一比拟【例8】一个连同装备共有 kgkg 的宇宙行员,脱离宇宙飞船后,在离飞船L=45m=45m 处与飞船处于相对静止状态,他带着一个装有 0.5kg0.5kg 氧气的贮氧筒,贮氧筒有个可以使氧气以v=50

19、m/s=50m/s 的速度喷出的喷嘴宇航员必须向着与返回飞船相反的方向释放氧气,才能回到飞船上去,同时又必须保存一局部氧气供他在飞向飞船的途中呼吸飞行员呼吸的耗氧率为如果他在开始返回的瞬间释放的氧气,他能平安回到飞船吗? ?如果宇航员想以最短的时间返回飞船,他开始最多能释放出多少氧气? ?这时他返回飞船所用时间是多少? ?【分析与解】此题立意在分析解决实际问题宇航员放出氧气后,由于反冲使自己获得返回飞船的速度设其反冲速度为,由动量守恒定律:因,故有宇航员返回飞船的时间在这 900s900s 内,宇航员需要呼吸氧气可以看出: :所以,宇航员可以平安返回飞船如果宇航员以最短的时间返回飞船,设时间为

20、 t,t,宇航员放出氧气的质量为 Am,Am,那么留下呼吸的氧气至少为m-的.根据动量守恒定律,宇航员获得的反冲速度:故有:而宇航员呼吸氧气应满足: :两式联立,可得:代入数据解出 Am=0.45kgAm=0.45kg另一解加=0.05kg=0.05kg 舍去求出【例9】质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上平衡时,弹簧的压缩量为,如下图物块从钢板正上方距离为 3 3 的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连它们到达最低点后又向上运动物块质量也为m时,它们恰能回到O点.假设物块质量为2m,仍从A处自由落下,那么物块与钢板回到O点时,还具有向上的速度.求物块

21、向上运动到达的最高点与O点的距离.【分析与解】物块与钢板碰撞时的速度可由自由落体公式求出,为.由于碰撞时间极短,碰撞过程中可认为重力远小于物块与钢板之间的碰撞弹力大小,系统动量守恒,以表示碰后物块与钢板的共同速度,那么有:因O点是弹簧的原长位置,所以物块碰后与弹簧向下运动压缩弹簧至最低点又弹起回到O点时,弹簧的弹性势能应恰为零,题目中说,这时物块与钢板的速度也恰为零.这个过程机械能守恒,设刚碰完时的弹性势能为,有:根据同样的思路,设质量是 2 2m的物体与钢板碰撞后的共同速度是,由动量守恒定律:碰后压缩弹簧至最低点又回到O点时,假设物块的速度为,那么有:因题目中给定的是轻弹簧,所以弹簧回到O点

22、时不再上升,而物块因有向上的速度,仍继续向上运动,也就是说,在O点物块与弹簧别离.物块还能上升的高度为:将以上关系式联立,可求出:此题是动量守恒与涉及弹簧的机械能守恒的综合问题,具有学科内综合解决问题特点.需要理解弹簧的弹性势能零点在弹簧的原长处,能正确分析表达涉及重力势能、弹性势能和动能的初末态机械能、以及正确判断出在极短时间内物块与弹簧碰撞过程可以运用动量守恒定律【例10如下图,一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,mvM.现以地面为参照系给A和B以大小相等、 方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离B

23、板.以地面为参照系,(1)(1)假设A和B的初速度大小为,求它们最后的速度的大小和方向.(2)(2)假设初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看) )离出发点的距离.【分析与解】(1)(1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度.设此速度为V,根据mvM,可知,判断出V的方向应与B板初速度同向,即向右.A和B的初速度的大小为,那么由动量守恒可得:解得:方向向右(2)(2)此题应着重理解物理过程的定性分析方法,在此根底上形成正确的物理图景.注意以下说理分析:A在B板的右端时初速度向左,而到达B板左端时的末速度向右,假设以地面为参考,可见A在运动过

24、程中必经历先向左受摩擦力作用而作减速运动,直到相对地面速度为零的阶段,而后经历因B板速度方向向右,A相对B板向左,故A所摩擦力方向向右,A向右作初速度为零的加速运动直到有共同速度为的阶段,如以下图所示在前一阶段,摩擦力阻碍A向左运动,在后一阶段,摩擦力为动力,使A向右加速设为A开始运动到速度变为零过程中向左运动的过程,为A从速度为零增加到速度过程中向右运动的路程,L为A从开始运动到刚到达B的最左端的过程中B运动的路程设A与B之间的滑动摩擦力为,那么由功能关系可知:对于 B:B:对于 A:A:由几何关系由以上四式解得【例11】如下图,一个带斜面的物体A静止在光滑的水平面上,它的质量为M=0.5k

25、g=0.5kg另一个质量为m=0.2kg0.2kg 的小物体B从高处自由下落,落到B的斜面上,下落高度为h=1.75=1.75m m与斜面碰撞后B的速度变为水平向右,碰撞过程中A、B组成的系统的机械能没有损失计算时取g=10m/s=10m/s21 1碰后A、B的速度各多大?2 2碰撞过程中A、B的动量变化量各多大?【分析与解】1 1当B落到A的斜面上时,B的速度方向竖直向下,而A的速度为 0 0由于水平面光滑,两物体相互作用过程中,水平方向不受外力作用,因此系统水平方向的动量守恒由于碰前系统水平方向的动量为 0 0,碰后总动量仍为 0 0设碰后两物体速度大小分别是和列动量守恒的关系式:再根据碰

26、撞过程中系统的机械能没有损失,得:解上面 2 2 式,得=-2m/s=-2m/s,=5m/s=5m/s,或=2m/s=2m/s,=-5m/s=-5m/s正负号代表二者的方向相反,由于我们事前没有规定正方向,因此两组解都可以认为正确根据实际情况我们知道,碰后方向是向右,假设以向右为正方向,那么应取=-2m/s=-2m/s,=5m/s=5m/s;假设取向左为正方向,那么应取=2m/s=2m/s,=-5m/s=-5m/s2 2我们规定向右为正方向,那么碰撞过程中A的动量变化量是:,其中负号代表方向向左由于B的初、末动量不在同一直线上,不能简单地用正负号表示方向,求动量变化需利用平行四边形定那么,初动

27、量大小为 kg-m/s=1.2kg-m/skg-m/s=1.2kg-m/s,方向竖直向下,末动量大小为=1kg=1kg m/sm/s,方向水平向右,动量变化量的大小为kgkg m/s=1.5kgm/s=1.5kg m/s,m/s,方向斜向右上,与水平方向夹角为此题中A、B两物体组成的系统在碰撞过程中,动量并不守恒,从上面的计算可以清楚看到这一点(二者的动量变化量并不是大小相等、方向相反),它们只是在水平方向上的动量分量守恒.其原因是除了A、B两物体间的相互作用以外,还受到重力及水平面的支持力,但由于重力及水平面的支持力都是沿竖直方向的,水平方向满足“不受外力的条件,因此水平方向动量分量守恒.)

28、【例【例12】带有斜面的木块P原静止在光滑的水平桌面上,另一个小木块Q从P的顶端由静止开始沿光滑的斜面下滑.当Q滑到P的底部时,P向右移动了一段距离,且具有水平向右的速度v,如下图.下面的说法中正确的选项是:(A)P、Q组成的系统的动量守恒(B)P、Q组成的系统的机械能守恒(C)Q减少的重力势能等于P增加的动能(D)Q减少的机械能等于P增加的动能【分析与解】选项 A A 是学生最容易错选的,其实在这个过程中,P、Q组成的系统只是在水平方向不受外力,水平方向的动量分量守恒,而在竖直方向上,由于地面对P的支持力在Q下滑过程中要大于P的重力,但小于P、Q的重力之和,竖直方向上不满足不受外力的条件,因此竖直方向上动量不守恒,总的动量也就不守恒.P、Q组成的系统在这个运动过程中,除了重力对Q做功以外,P对Q的支持力要做负功,而Q对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论