初三相似三角形提高拓展专题练习(附答案)_第1页
初三相似三角形提高拓展专题练习(附答案)_第2页
初三相似三角形提高拓展专题练习(附答案)_第3页
初三相似三角形提高拓展专题练习(附答案)_第4页
初三相似三角形提高拓展专题练习(附答案)_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、相似三角形1 在 ABC和 DEF 中, AB 2DE, AC 2DF,A D ,如果 ABC的周长是16,面积是12,那么 DEFA 8, 3B 8, 6C4, 3D,62如图,等边 且 ABC的边长为3, P 为 BC 上一点,BP 1 , D 为 AC 上一点,若APD 60° ,则CD 的长为(3A23.如图,)2B3ABC 中,1C23D41A, CDCD AB 于 D, 一定能确定 ABC为直角三角形的条件的个数是(DBAD CDC 3 B 2 90°, BC:AC:AB=3 : 4: 5,错误!未找到引用源。D 4A 1B 24.如图, 菱形 ABCD 中,

2、对角线AC、 BD 相交于点O, M、N 分别是边AB 、 AD 的中点,连接OM 、ON、 MN,则下列叙述正确的是(A B 四边形 C四边形AOM 和 AON 都是等边三角形MBONAMOND 四边形MBCO和四边形 与四边形 和四边形MODN 都是菱形ABCD 是位似图形NDCO 都是等腰梯形5.如图,在长为8 cm、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A. 2 cm 2 B. 4 cm2C. 8 cm2 D. 16 cm26一张等腰三角形纸片,底边长l5cm,底边上的高长22 5cm现沿底边依次从下往上裁剪宽度均为 3

3、cm 的矩形纸条,如图所示已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A第 4 张B 第5 张 C.第 6 张D第7 张7如图,在平行四边形ABCD 中, AB 6, AD 9, BAD 的平分线交BC于点 E ,交 DC 的延长线于点F , BG AE ,垂足为G ,若 BG 4 2 ,则 CEF 的周长为()A 8B9.5C 10D 11.5二、填空题8如图,路灯距离地面米的 错误!未找到引用源。8 米,身高处,则小明的影长为1.6 米的小明站在距离灯的底部(点20米错误!未找到引用源。错误!未找到引用源。)9. 在 ABCD 中, 错误!未找到引用源。 错误!未找到引用源。在

4、错误!未找到引用源。上,若1, 1)点 C 的坐标为( 4, 2) ,10 .如图,正方形 OEFG 和正方形ABCD 是位似形,点 F 的坐标为则这两个正方形位似中心的坐标是11 如图,原点O 是 ABC 和 A B C 的位似中心,点A(1, 0)与点 A ( 2, 0)是对应点,ABC 的面积是错误!未找到引用源。,则A B C 的面积是12. 将三角形纸片( ABC) 按如图所示的方式折叠,使点 B 落在边 AC 上, 记为点 B, 折痕为EF 已知AB AC 3, BC 4,若以点B, F, C 为顶点的三角形与ABC 相似,那么BF 的长度是AB13如图,正方形ABCD 的边长为1

5、cm, E、 F 分别是 BC、 CD 的中点,连接BF、 DE,则图中阴影部分的面积是cm2三、解答题14(1)把两个含450角的直角三角板如图1 放置,点D 在 BC 上,连接BE、 AD , AD 的延长线交 BE 于点F,求证:AF BE( 2)把两个含300角的直角三角板如图2 放置,点D 在 BC 上,连接BE、 AD, AD 的延长线交BE 于点F,问AF 与 BE 是否垂直?并说明理由.15在Rt ABC 中,ACB 90° , D 是 AB 边上一点,以BD 为直径的 O与边 AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F ( 1)求证:BD BF

6、;( 2)若BC 6, AD 4,求 O的面积16如图,M 为线段 AB 的中点,AE 与 BD 交于点C,DME AB且 DM 交 AC 于 F, ME 交 BC 于 G( 1 )写出图中三对相似三角形,并证明其中的一对;( 2)连结FG,如果 45°,AB 错误!未找到引用源。, AF 3,求 FG 的长17正方形ABCD 边长为4, M 、 N 分别是BC、 CD 上的两个动点,当M 点在 BC 上运动时,保持 AM 和 MN 垂直,1)证明:Rt ABM Rt MCN ;2) 设 BM=x , 梯形 ABCN 的面积为y, 求 y与 x 之间的函数关系式;当 M 点运动到什么

7、位置时,四边形ABCN 的面积最大,并求出最大面积;( 3)当M 点运动到什么位置时Rt ABM求此时x 的值 .18.已知 ABC=90 °, AB=2 , BC=3, AD BC, P 为线段 BD 上的动点,点Q 在射线 AB 上,且满足 错误!未找到引用源。(如图 1 所示)( 1)当AD=2 ,且点 错误!未找到引用源。与点 错误!未找到引用源。重合时(如图2 所示),求线段 错误!未找到引用源。的长;( 2)在图1 中,联结错误!未找到引用源。当 错误!未找到引用源。,且点 错误!未找到引用源。 在线段 错误!未找到引用源。上时,设点错误!未找到引用源。之间的距离为错误!

8、未找到引用源。 , 错误!未找到引用源。,其中 错误!未找到引用源。表示 APQ 的面积,错误!未找到引用源。表示 错误!未找到引用源。的面积,求错误!未找到引用源。关于 错误!未找到引用源。的函数解析式,并写出函数定义域;( 3)当错误!未找到引用源。,且点 错误!未找到引用源。在线段 错误!未找到引用源。的延长线上时(如图3 所示),求错误!未找到引用源。的大小巩固训练答案一、选择题1 、 A2、B3、C4、C5、C6、C7、A二、填空填8、59、3:510、(2,0)11、 612、 错误!未找到引用源。或 213、错误!未找到引用源。三、解答题14 、(1 )证明:在 ACD 和 BC

9、E 中, AC=-BC , DCA= ECB=90 0, DC=ECACD BCE, DAC= EBCADC= BDFEBC+ BDF= DAC+ ADC=90 0BFD=90 0,AF BE2) AF BE,理由如下:ABC= DEC=30 0,ACB= DCB=90 0错误!未找到引用源。DCA ECB, DAC= EBCADC= BDFEBC+ BDF= DAC+ ADC=90 0BFD=90 0,AF BE15 、(1 )证明:连结OE AC 切 O于 E ,OE AC ,又 ACB 90°, 即 BC AC,OE BCOED F 又 OD OE ,ODE OED ,ODE

10、F ,BD BF ( 2)设 O半径为r ,由OE BC 得 AOE ABC AO OEr 4 r,即,AB BC2r 4 62r2 r 12 0 ,解之得r1 4, r2 3(舍)S O r 16 16、(1)证:AMFBGM,DMG DBM , EMF EAM以下证明AMFBGM AFM DME E A E BMG, A B AMF BGM( 2)解:当 45°时,可得AC BC 且 AC BC M 为 AB 的中点,AM BM 错误!未找到引用源。又 AMF BGM , 错误!未找到引用源。 错误!未找到引用源。又 错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引

11、用源。 错误!未找到引用源。17 、(1 )证明:四边形ABCD 是正方形,B= C=90°,ABM+ CMN+ AMN=180AMN=90AMB+ BAM=90AMB+ CMN=90 °BAM= CMN Rt ABM Rt MCN2)Rt ABM Rt MCN ,AB =BM,即MC CN4x4-x CN解得: CN x(4 x)1S梯形 = CN+AB BCy=1 x(4 x)=44,24,即: 错误!未找到引用源。又 错误!未找到引用源。当 x=2 时, y 有最大值10.当 M 点运动到BC 的中点时,四边形ABCN 的面积最大,最大面积是10.AB BM3)解法一

12、:Rt ABM Rt AMN ,即AM MNx2 164 x2化简得:x2 16 x 20 ,解得: x=2当 M 点运动到 解法二:错误!未找到引用源。错误!未找到引用源。BC 的中点时Rt ABM Rt AMN ,此时 x 的值为 2.要使 错误!未找到引用源。错误!未找到引用源。由( 1)知 错误!未找到引用源。错误!未找到引用源。,运动到 错误!未找到引用源。的中点时,错误!未错误!未找到引用源。当点 错误!未找到引用源。找到引用源。,此时 错误!未找到引用源。18 、(1 )Rt ABD 中, AB=2 , AD=2 , 错误!未找到引用源。=1 ,D=45° PQ=PC 即 PB=PC,而 PBC= D=45° PC=PB=错误!未找到引用源。( 2)在图 1 中,过点P 作 PE BC, PF AB 于点F。 A= PEB=90°,D= PBE Rt ABD Rt EPB 错误!未找到引用源。设 EB=3k,则 EP=4k, PF=EB=3k 错误!未找到引用源。,错误!未找到引用源。=错误!未

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论