多重共线性模型_第1页
多重共线性模型_第2页
多重共线性模型_第3页
多重共线性模型_第4页
多重共线性模型_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、多重共线性报告分析背景与意义:农产品的产量及其分布构成在国民生产生活中具有重要意义,它能真切反应国名的日常生活需求什么,因此本次研究就是对于2000年-2008年人均主要工农业产品产量进行分析,主要考虑各解释变量之间是否存在多重共线性,并对其进行修正处理降低多重共线性对结果的影响,从而使结果模型更具代表性,更真切的展示结果,进而有利于国家对农业产品的生产组成的了解以及监控,才能更好的对其调控,促进其稳定、科学的发展。一、数据选择主要人均主要工农业产品产品年份工农业产品产粮食油料糖料水果猪牛羊2000量536.78366.0423.460.4749.3肉37.572001536.81355.89

2、22.5368.0552.3537.992002552.77356.9622.6380.3954.338.492003583.12334.2921.8274.83112.6839.52004618.47362.2223.6673.84118.3640.392005632.99371.2623.672.5123.6541.982006652.91379.8920.1479.78130.4542.652007670.29380.6119.4992.48137.6240.092008710.21399.1322.29101.31145.142.38(来源与中国统计网)二、实验步骤:1、 参数估计,过

3、程如下:(1)先录入数据至eviews,得到下表:obsYX1X2X3X4X52000536780036604002340C00604700049.3000037.570002001636.3100355-89002253000680500052.3500037.990002002552.770035G.960022.6300080.390054.3000039,490002003583J2O0334.2900218200074,03000112680039,50000200461847003622200236600073840001183600403900020056329900371260

4、023600007250000123650041980002006652.9100379.B90020.1400。79.78000130450042,650002007670.2900380.610019.4900092.48000137.620040,090002008710.2100399.130022.29000101.310014510004233000L.C1J(2)在命令窗口输入LSycx1x2x3x4x5,出现下列结果:DependentVanable:YMethodLeastSquaresDate:12/25/11Time:0813Sample:20002008Included

5、observations9VanableCoefficientStdError1StatisticProbC254E102.02E-10-1.2566190.2978X11000000396E-13253E+12000001oooooo398E-12251E+11000001.000000664E-131.51E+12000001oooooo31*33.19E+12000001oooooo5.17E-121.62E+1100000R-squared1.000000Meandependentvar6104333AdjustedR-squared1OOOOQOS.Ddependentvar62.0

6、8072S.E.ofregression137E-11Akaikeinfocnterion-46.95645Sumsquaredresid5.62E-22Schwarzcriterion16.82497Loglikelihood217.3040F-stattstic3.29E+25Durbin-Watsonstat2.395932Prob(F-statistic)oooooooT2、 分析从结果看判断系数R,很高,说明方程很显著,但四个参数t检验值中有三个较显著,有一个不显著,不符合经济理论,显然认为出现了多重线性回归。三、检验计算解释变量之间的简单相关系数。Eviews过程如下:(1)在Qu

7、ick菜单中选GroupStatistics项中的Correlation命令。在出现SeriesList对话框时,直接输入x1X2X3X4,出现解释变量x1x2x3x4之间的相关系数为:CorrelationMatrixX1X2X3X4X1X2X3X4X11.0000000.9822490.9801540.985451X209822491.0000000.9900770981440X309801540.99007710000000.984562X409854510.96144009845621.000000可以看出四个解释变量x1x2x3x4之间的高度相关,必然存在严重的多重共线性。辅助回归检

8、验:解释变量x1x2x3x4之间的辅助回归分别为:在命令窗口分别输入:lsx1cx2;lsx1cx3;lsx1cx4;lsx2cx3;lsx2cx4;lsx3cx4;结果分别为:DependentVariable:X1Method:LeastSquaresDate:11/24/11Time:08:46Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C1077.333543.45941.9823620.0621X21

9、3.183760.57759822.825140.0000R-squared0.964814Meandependentvar11725.53AdjustedR-squared0.962962S.D.dependentvar6638.021S.E.ofregression1277.503Akaikeinfocriterion17.23360Sumsquaredresid31008264Schwarzcriterion17.33307Loglikelihood-178.9527F-statistic520.9871Durbin-Watsonstat0.611662Prob(F-statistic)

10、0.000000DependentVariable:X1Method:LeastSquaresDate:11/24/11Time:08:53Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C2337.206525.88784.4443050.0003X31.4539730.06746421.551870.0000R-squared0.960702Meandependentvar11725.53AdjustedR-s

11、quared0.958634S.D.dependentvar6638.021S.E.ofregression1350.091Akaikeinfocriterion17.34412Sumsquaredresid34632150Schwarzcriterion17.44360Loglikelihood-180.1133F-statistic464.4832Durbin-Watsonstat0.865011Prob(F-statistic)0.000000DependentVariable:X1Method:LeastSquaresDate:11/24/11Time:09:05Sample(adju

12、sted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C2405.3699446.9817305.381360863.41634090423873159189e-05X44.60403150.1821678425.27356814.356762641693599746462e-16R-squared0.9711137Meandependentvar11725.528770685714AdjustedR-squared0.9695934S.D.

13、dependentvar6638.0216074316668S.E.ofregression1157.5030Akaikeinfocriterion17.03631115205737Sumsquaredresid25456451.Schwarzcriterion17.13578211889011Loglikelihood-176.88126F-statistic638.7532102449431Durbin-Watsonstat0.5080094Prob(F-statistic)4.356762037226462e-16DependentVariable:X2Method:LeastSquar

14、esDate:11/24/11Time:09:05Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C101.121627.774743.6407760.0017X30.1094240.00356330.710380.0000R-squared0.980252Meandependentvar807.6753AdjustedR-squared0.979213S.D.dependentvar494.5626S.E.ofr

15、egression71.30498Akaikeinfocriterion11.46220Sumsquaredresid96603.61Schwarzcriterion11.56168Loglikelihood-118.3531F-statistic943.1276Durbin-Watsonstat2.211553Prob(F-statistic)0.000000DependentVariable:X2Method:LeastSquaresDate:11/24/11Time:09:05Sample(adjusted):19781998Includedobservations:21afteradj

16、ustingendpointsVariableCoefficientStd.Errort-StatisticProb.C116.108137.576143.0899430.0060X40.3416250.01531422.307720.0000R-squared0.963224Meandependentvar807.6753AdjustedR-squared0.961288S.D.dependentvar494.5626S.E.ofregression97.30710Akaikeinfocriterion12.08401Sumsquaredresid179904.8Schwarzcriteri

17、on12.18349Loglikelihood-124.8821F-statistic497.6345Durbin-Watsonstat0.530959Prob(F-statistic)0.000000DependentVariable:X3Method:LeastSquaresDate:11/24/11Time:09:06Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C179.7667310.32270.579

18、2900.5692X43.1008740.12647224.518200.0000R-squared0.969362Meandependentvar6457.012AdjustedR-squared0.967749S.D.dependentvar4474.829S.E.ofregression803.6109Akaikeinfocriterion16.30650Sumsquaredresid12270021Schwarzcriterion16.40598Loglikelihood-169.2183F-statistic601.1422Durbin-Watsonstat0.896788Prob(

19、F-statistic)0.000000六个回归方程均存在高度显著,拟合优度高,具有共线性。四、修正运用OLS方法逐一求Y对各个解释变量的回归。结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。分别输入“lsycx1”、DependentVariable:YMethod:LeastSquaresDate:11/24/11Time:09:25Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C-2241.475

20、648.0392-3.4588570.0026X12.0093540.04837641.536570.0000R-squared0.989107Meandependentvar21319.26AdjustedR-squared0.988534S.D.dependentvar13411.38S.E.ofregression1436.083Akaikeinfocriterion17.46762Sumsquaredresid39184332Schwarzcriterion17.56710Loglikelihood-181.4100F-statistic1725.286Durbin-Watsonsta

21、t0.520820Prob(F-statistic)0.000000Isycx2”、DependentVariable:YMethod:LeastSquaresDate:11/24/11Time:09:13Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C-436.7055675.4209-0.6465680.5256X226.936520.71784937.523940.0000R-squared0.986686

22、Meandependentvar21319.26AdjustedR-squared0.985985S.D.dependentvar13411.38S.E.ofregression1587.703Akaikeinfocriterion17.66836Sumsquaredresid47895234Schwarzcriterion17.76784Loglikelihood-183.5178F-statistic1408.046Durbin-Watsonstat1.194877Prob(F-statistic)0.000000lsycx3”DependentVariable:YMethod:Least

23、SquaresDate:11/24/11Time:09:18Sample(adjusted):19781998Includedobservations:21afteradjustingendpointsVariableCoefficientStd.Errort-StatisticProb.C2065.912540.80643.8200590.0012X32.9817740.06937842.978820.0000R-squared0.989819Meandependentvar21319.26AdjustedR-squared0.989283S.D.dependentvar13411.38S.E.ofregression1388.391Akaikein

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论