大型立式储油罐结构设计_第1页
大型立式储油罐结构设计_第2页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、设计题目大型立式储油罐结构设计技术参数和设计要求:技术参数:直径15m长度材质16Mn壁厚10mm设计要求:工作压力cm2实验压力cm2常温下微冲击设计任务:1写出该结构的几种设计方案2.强度计算及尺寸选择3绘制结构设计图4.撰写主要工艺过程5撰写设计说明书工作计划与进度安排:1查阅资料2天2.设计计算并撰写设计说明书5天3.上机绘图4天4.答辩1天1储罐及其发展概况油品和各种液体化学品的储存设备储罐是石油化工装置和储运系统设施的重要组成部分。由于大型储罐的容积大、使用寿命长。热设计规范制造的费用低,还节约材料。20世纪70年代以来,内浮顶储油罐和大型浮顶油罐发展较快。第一个发展油罐内部覆盖层

2、的施法国。1955年美国也开始建造此种类型的储罐。1962年美国德士古公司就开始使用带盖浮顶罐,并在纽瓦克建有世界上最大直径为187ft()的带盖浮顶罐。至1972年美国已建造了600多个内浮顶罐。1978年国内3000m3铝浮盘投入使用,通过测试蒸发损耗标定,收到显著效果。近20年也相继出现各种形式和结构的内浮盘或覆盖物1。世界技术先进的国家,都备有较齐全的储罐计算机专用程序,对储罐作静态分析和动态分析,同时对储罐的重要理论问题,如大型储罐T形焊缝部位的疲劳分析,大型储罐基础的静态和动态特性分析,抗震分析等,以试验分析为基础深入研究,通过试验取得大量数据,验证了理论的准确性,从而使研究具有使

3、用价值。近几十年来,发展了各种形式的储罐,尤其是在石油化工生产中大量采用大型的薄壁压力容器。它易于制造,又便于在内部装设工艺附件,并便于工作介质在内部相互作用等。2设计方案各种设计方法正装法此种方法的特点是指把钢板从罐底部一直到顶部逐块安装起来,它在浮顶罐的施工安装中用得较多,即所谓充水正装法,它的安装顺序是在罐低及二层圈板安装后,开始在罐内安装浮顶,临时的支撑腿,为了加强排水,罐顶中心要比周边浮筒低,浮顶安装完以后,装上水除去支撑腿,浮顶即作为安装操作平台,每安装一层后,将上升到上一层工作面,继续进行安装。倒装法先从罐顶开始从上往下安装,将罐顶和上层罐圈在地面上安装,焊好以后将第二圈板围在第

4、一罐圈的外围,以第一罐圈为胎具,对中点焊成圆圈后将第一罐圈及罐顶盖部分整体吊至第一、二罐圈相搭接的位置,停于点焊,然后在焊死环焊缝。用同样的方法把下面的部分依次点焊环焊,直到罐底板的角接焊死即成。卷装法将罐体先预制成整幅钢板,然后用胎具将其卷筒,在运至储罐基础上,将其卷筒竖起来,展成罐体装上顶盖封闭安装而建成。各种方法优缺点比较正装法这种装焊方法需要采用多种设备和装配夹具,大多数装配焊接都要搭脚手架,此外,装配工作在吊架吊台上工作,不仅操作不方便,不宜保证焊接质量,还花费时间,而且高空焊接薄钢焊接容易变形,工序烦琐,各工种相互制约,施工速度慢,也不安全,所以在大型储罐中很少采用正装法。倒装法这

5、种方法不用搭脚手架,并且操作人员是在地面上工作,安全增加,有利于提高工程质量,但相比于卷装法来说,由于倒装法也是在工地作用,因此劳动强度还是比较大,而卷装法生产效率和产品质量上都比前两中大有提高。综上所述,采用卷装法。油罐的基础为了确保有一个稳定性,排水良好,具有足够承载能力,必须建造油罐基础或底座,大的油罐常需带有混淋土的基础,以便把整个基础封闭起来,增加稳定性。油罐基础座,根据油罐的类型,容易满足生产使用要求,地形地貌、地基条件,以及施工技术条件的因素。合理选用的油罐基础有以下常见几种:护坡式基础、环墙式基础、外环墙式基础、特殊构造的基础。根据比较选用,护坡式基础2。3罐壁设计罐壁的强度计

6、算罐壁厚的计算PPi2Qt屮+P+C(mm)式中:P设计压力:(Mpa);P罐的内径:15000(mm);iqt设计温度下材料的许用应力230(Mpa);屮一焊缝系数:查表得;C钢板的负偏差(mm);C腐蚀裕度C=KB;22K腐蚀,轻微腐蚀(mm);B容器的使用寿命10年;C壁厚减薄量0(mm);35=0.2X15000+1.8沁9.04=10mm2x230x0.9+0.2取5二10mm5二10mm罐壁的应力校核pb+(5-c)Qt=i=2(5一cm岂船/203.36MPa230MPa)5t二203.36MPa故满足材料要求按照试验应力公式校核二PTD+(5-c)0.9QQ一t2(5一c)屮式

7、中:Q为材料的屈服极限Q二345MPa,P=0.2MPassT小=0.25X15000+(10-E=254.2MPaT2x(10一1.8)x0.9而0.9b二0.9x345MPa=310.5MPas.b二254.2MPawminZ则有:P=0.7x1.15x550=442.75N/m21P二0.32PH二0.32x442.75x10.5二1487.64N/m01MmaxPx7.52o=10467.47N/m3.14211.0472Mmax=10467.5N/mMCD=maxZQ10467.47310.5=3.37x107mm3取D=3.5x104mm3min当抗风圈遇到盘梯而需开口时,应进行加

8、强,使其断面系数不低于。开口的罐壁应采用角钢加强,角钢两端伸出开口的长度应不小于抗风圈的最小宽度。抗风圈腹板开口边缘应采用垂直安放的扁钢加强。抗风圈的外周边可以是圆形或多边型,它可以采用型钢或型钢与钢板的组合件制成。所用的钢板最小厚度为5mm。角钢的最小尺寸为63X6,如图所示抗风圈形式。为满足强度条件,抗风圈本身的接头必须采用全焊透的对接焊缝,抗风圈与罐壁之间的焊接,上表面采用连续满角焊,下面可采用断焊。加强圈计算在风载荷作用下,罐壁筒体应进行稳定性校核,防止储罐被风吹瘪。判定储罐的侧压稳定条件为PPcr0式中P罐壁许用临界应力(Pa);crP设计外压(Pa);0罐壁许用临界应力的计算由SH

9、304692推荐的方法,得在外压作用下的临界压力公式厂2.59E52.5P=一crD1.5L式中P临界压力(Pa);crE圆筒材料的弹性模量:192X109(Pa);b圆筒壁厚(m);D圆筒直径(m);L圆角长度(m);Pcr2.59x192x109x(10x10-3)2.5151.5x10.5=0.82x104PaPcr=0.82x104pa罐壁设计外压计算罐壁设计外压用下式表示,即式中P0罐壁设计外压(Pa);p风载荷体形系数;sp风压高度变化系数zw基本风压(Pa);0q罐内负压(Pa);对固定顶储罐,罐壁的设计外压计算公式为:0P=2.25pw+q()0Z0w基本风压(Pa);0P0=

10、1266.3Pap风载荷体形系数;sP二2.25x1.0x550+1.2x800x0.03二1266.3PaP,所以在罐壁上不需要设置加强圈。cr0储罐的抗震计算地震载荷的计算自震周期计算储罐的罐液耦连震动基本自震周期为HwH1DT=7.743x10-5ed+0.7147wD1D5Y3式中T储罐的罐液耦连震动基本自震周期(s);1e自然对数的底:;Hw一储罐底面到储液面的高度::D一储罐的内直径:15mm53位于罐壁高度1/3处的罐壁名义厚度:10X10-3m10.5则T二7.743x10-5(2.718)151+07147X百X15X*10X10-315二1.131x10-2(s)T1二1.

11、131X10-2s水平地震作用几效应计算式中F一储罐的水平地震作用HFH二KamgZeq()m二m申()eqLN);a水平地震影响系数,按罐液耦连震动基本自震周期确定m等效质量(Kg);eqm储液质量(Kg);Lg重力加速度取s2申一动液系数;K综合影响系数取K=;ZZ兀D2兀meq二25222.05F=81156.49NM1=383464.42m=pV=800Kg/m3xH=800xx152x10.5=1483650kgL油44m=0.017x1483650二25222.05Kgeq:.F=0.4x0.82x25222.05x9.81=81156.49NH水平地震作用对罐底的倾覆力矩M=0.

12、45xFH=0.45x81156.49x10.5二383464.42N/m1HW罐壁竖向稳定许用临界应力计算第一周罐壁的竖向稳定临界应力5c二KEicrCD1応DK=0.09151+0.04291-0.17061c51第一周罐壁稳定许用临界应力c二crcr1.5n式中E罐壁材料的弹性模量(Pa);D第一圈罐壁的平均直径(m);1K二0.165Clbcr1.41x107Pa抗震验算罐底周边单位长度上的提离力Ft-4M1兀D21b1第一圈罐壁的有效厚度(m);H罐壁的高度(m);K系数;耳一设备重要度差别;C10515030K广心x1+0。429丽評-。小+二0165b=KcEi=0.165x19

13、2x106x0,010-2.11x107PacrD15.0301-1.41x107Pab-2,11x107cr1.5n1.5x1.00FL0式中Ft罐底周边单位长度上的提离力(N/m);FL0储液和罐底的最大提离反抗力(N/m)当其值大于0.02HwDpg时,1S取0.02HwD1pg;Sb罐底环形边缘板的屈服点yPa);8-罐底环形边缘的有效厚度bm).by106-76.24PaP储液密度(Kg/m3);X(P+Pgy人D(101325+1.25x9.81x10.5人15.030I0IxIIx106281062x0.010b383464.42兀x15.032=2.16x103N/mFt=2.

14、16x103N/mF=0.010x;76.24x10.5x800x9.81=25.06N/mL00.02HDpg=0.02x10.5x800x9.81x15.030=2.48x104N/mW1SFbccr=3.12x107Pabc=3.12x107Pa所以采取用锚固螺栓通过螺栓座把储罐锚固在基储上。锚固螺栓应力4MF-NIbtrnAbtcQbtbt式中c地脚螺栓的拉应力,若c0,则地脚螺栓的拉应力为0(Pa);btbtn地脚螺栓的个数(20个);A个地脚螺栓的有效截面积(m3);btDr一地脚螺栓的中心圆直径(m);c地脚螺栓抗震设计的许用应力(Pa);btc=匕1;c=1.2c;c=230M

15、Pa;bt耳0ttc=1.2x230=276MPabt1.00c=bt14x383464.420.07一1.46x106=2.32x108Pa10s()w3.68g故取:=;2h=0.85x1.05x0.82x7.5=549mV地震对储罐的破坏储罐在地震时的破坏,重要有1.储罐本身的震害,如浮顶沉没,焊缝破裂,罐壁下部屈服等。2.液面晃动对储罐的危害,晃动造成的液体高度变化对罐壁产生的动液压一般不大,但产生的冲击力,有可能破坏罐顶和罐壁顶部的焊缝3.储液负数设备和基础发生破坏。储罐抗震加固措施当验算核实罐壁厚度不满足抗震要求时,应采取加补强板,加强环,支撑等加固措施。1.加强板在最下层壁板圆孔

16、以下罐内(外)沿罐壁圆周增设宽度不小于300mm,厚度不小于4mm的钢板加强,加强板要和壁板底板焊牢,并保证焊接质量2.加强环可在罐内或罐外设置,距离罐的水平焊缝不得小于150mm。加强环与罐壁连接成型,其截面尺寸按储罐的直径决定。见表1。表加强环尺寸储罐直径(m)加强环尺寸备注D20L100X63X8采用其他形状的截面,其断面系数应相同罐壁结构截面与连接形式罐壁为一个圆柱形的钢板焊接结构,由于该罐壁是等厚度的且较厚,因此各板之间采用对接,即所有的纵向焊缝及环焊缝均采用对接,这样可以减轻自重。罐臂的下部通过内外角焊缝与罐底的边缘板相连,上部有一圈包边角钢这样既可以增加焊缝的强度,还可以增加罐壁

17、的刚性。在液压作用下,罐壁中的纵向应力是占控制地位的。即罐壁的流度实际上是罐壁的纵焊缝所决定的。因而壁板的纵向焊接接头应采用全焊透的对接型。常见的罐壁纵向焊接接头如图所示。16iH图罐底纵向焊接接头形式为减少焊接影响和变形,相邻两壁板的纵向焊接接头宜向同一方向逐圈错开1/3板长,焊缝最小间距不小于1000mm。底圈壁板的纵向焊接接头与罐底边缘板对接焊缝接头之间的距离不得小于300mm。以内径为基准的对接如图。图以内径为基准的环向对接接头形式底层壁板与罐底边缘板之间的连接应采用两侧连续角焊。在地震设防烈度不大于7度的地区建罐,底层壁板与边缘壁板之间的连接应采用如图的焊接形式,且角焊接头应圆滑过渡

18、,而在地震小于7度的地区可取K=K3。21图底层壁板与边缘板的焊接罐壁的开孔补强罐壁上的开孔可为圆形,椭圆形,当开设椭圆形时,孔的长径与短径之比应不大于,其长轴方向最好为环向。开孔补强计算采用等面积法,当孔直径DWIOOmm时,可不考虑补强。罐壁开空按管补强板外缘与罐壁纵向焊接接头的距离不得小于250mm,与环向焊接接头之间的距离不得小于1OOmm。壁板宽度壁板宽度越小,材料就越省。但环向接头数就越多,增加安装工作量。我国一般取壁板厚度不小于16OOmm。罐壁保温结构与罐壁相焊接的保温结构在与罐壁相焊时,应用罐壁焊缝施焊的焊接工艺和与罐壁材料相适应的焊接材料。避免对罐壁造成伤害。保温支撑件可用

19、型钢或用扁钢焊接而成,支撑件的承面宽度应小于保温层厚度1020mm。支撑件间距,高温介质时不大于23m,中低温介质不大于35m。支撑件的位置应设在阀门或法兰上方,其位置不能影响螺栓的拆卸。4 罐底设计罐底结构设计罐底的结构形式和特点采用倒圆锥形罐底。这种罐底及其基础成倒圆锥形。中间低四周高,罐底坡度一般取2%5%。随排除污泥杂质,水分的要求高低而定。在罐底中央焊有集液槽,沉降的污泥和存液集中与此,由弯管自上或由下引出排放。这种罐底形式的特点2如下:1液体放净口处于罐底中央。不管日后罐底如何变形,放净口总是处于罐底的最低点,这对排净沉降的杂质,水分,提高储存液体的质量十分有利。2因易于清洗,对于

20、燃料油罐可以不再设置清扫孔。3倒圆锥形罐底可以增加储罐容量,储罐直径越大,罐底坡度越陡,可增加的容量越多。4因较少形成凹凸变形和较少沉积,可以改善罐底腐蚀状况。5罐底受力比较复杂,储罐基础设计,施工要求比正圆锥形罐底更加严格。罐底的排板形式与节点罐底的排板形式根据储罐大小,控制焊接变形等制造工艺决定。对于直径大于的储罐,罐底外缘受罐作用力及边缘力较大,故底板的外周比中部厚。易采用如下排板方法。如图1图罐底排版图边缘板之间,边缘板与中幅板之间,以及中幅板之间的焊接可采用搭接焊结构,也可采用对接焊结构,如图,选择对接焊工艺。焊缝下面应紧贴垫板,垫板厚度应不小于4mm,宽度不小于50mm,以改善焊接

21、质量,加强焊缝,减少腐蚀。当边缘板厚度不大于6mm焊接可不开坡口,但焊缝间隙应大于6mm。当边缘板厚度大于6mm应开V型坡口。60图加垫板的V型破口图罐底排板选择带垫板的单面焊对接结构。与采用传统的搭接焊相比,对接焊强度高,能保持罐底平整,节省罐底材料。但要求严格,施工不如搭接焊方便。罐底与罐壁底圈的内外交焊缝均采用连续焊,焊接高度等于罐底的边缘板厚度。当边缘板厚度大于等于10mm时,为改善受力情况避免应力集中,采用如图所示的角焊方法。罐底的应力计算中幅板的薄膜力2M02+ML010Rt020乞(1一卩)1罐壁与边缘板之间的约束弯矩!(匕)3pl3+240t卩(2012Lo-1)401420+

22、匹M21Rt0117l(o、+()3o(1-M)40tRt0式中t边缘板厚(mm);01罐壁第一圈壁板特征系数,卩,3(1卩2)1R2021卩泊松比,;D边缘板弯曲刚度D=Et312(1M2)K弹性地基系数(一般取为400KN/m2);B罐壁边缘板特征系数,0=:3(1M2)R212P=8.24x104Pa192x109x83x10-912(10.32)二0.9x104;0_13(1-0.32)_52x0.012二5.25;3(10.32)452x0.0092二4.58;0.32x4.582x10.5歸(普)3x9.20x104x14-033+*2x4.58;忒;0.7)-114584.582

23、x4.58+0.010x7.5x0.0067.5x0.00617x14.030、+()30.7408M0二1.38x106N/m=1.38x106N/mR储罐半径,51储罐第一圈厚度,10mm;t中幅板的平均厚度,6mm;0L底板上的液压高度,;0P作用在罐底上的储液压力,P=PgL;0p储液密度,800Kg/m3;N=4.06x107NL边缘板弯曲刚度,;N=2XI38X4582+3X10.5-2x4.58x0.010%0.77.5x0.0064.06x107N122x1.38x106P-x(8.24x104一)-1.64x105Pa2514.032边缘板上表面的径向应力分布为c-N-竺()

24、xt12边缘板上表面的环向应力分布为c-N-6Mx-()yt12式中卩-边缘板受弯区域内任一点的弯矩如图所示的力的平衡关系xx图力的平衡关系图再分别求出0x右及|x1的弯矩Mx23M8pM(051212尹1+亍)兀一气2)x3(Up12M0)X2+pl(+4)12(丄x1)5212x52122当x=0时卩-1.38x106N/mo40所以当x=-时,卩有最大值且R二1.91X106N/m2xxx-1.91x106N/m4.06x1076x1.91x106所以一-4.99MPa2c-690MPax882sc-4.99MPax4.06x1076x0.3x1.91x106c“小c-5.02MPa0.

25、4;15000x10所以A=0.75d5mm2所以A=0.75x600x10=4500mm2有效补强范围。对于圆筒有:=x15000故补强面积为A=4500mm2,补强板取Dg200材料16Mn通气孔用于贮存易挥发介质的固定顶罐上再贮罐顶部靠近顶罐中心处安装,起呼吸作用,如图所示:图通气孔表通气孔规格尺寸(mm)规格dDD1d1EHnDN200275275315205503244量液孔使用于安装有通气孔的贮罐,公称直径一般为DN150安装于固定罐壁附近的顶部,往往在透气孔附近。用来测定液量或取样用。量液孔德正下方应避开加热器或其它设备,其法兰要求水平,为了使量液孔严密,盖内侧刻有一圈特别的凹槽

26、,测量时,量液尺沿着导向槽放于罐底,导向槽或量液孔壳应用有色金属(Al)制成,以免量液尺与其摩擦产生火花,而发生危险。贮罐进出液口进液口开在罐顶,据罐壁750mm,孔径取为300mm,出液口开在罐壁第一圈的位置,距罐底200mm,孔径取为300mm.法兰和垫片法兰连接应满足的基本要求是:法兰可靠,选择合理,如在操作压力和温度有浮动,介质有较强的腐蚀的情况下,仍能紧密不漏,保证生产的正常进行,有足够的抵抗所有作用力的强度和刚度;能保证装卸而不影响密封性能。选择DN200的法兰,材料为16MnR,选择DN200的法兰,材料为16MnR,匹配温度0-30,螺母材料为Q235。7 焊接工艺焊接结构生产

27、的一般工艺过程,如图所示,焊接时整个过程中的核心工序。图焊接工艺过程图板材检验,首先检测板材是否合格。钢材的矫形:净化与板加工。净化常用方法用钢丝刷,砂纸等。材料在搬运和贮存中会产生扭曲,弯曲,隆起等缺陷,在剪切冷割,焊接中也会产生变形,妨碍后面工作的进行因此必须矫正。7.3焊接材料的选用。焊剂表焊接材料选用表焊条手工电弧焊J507或J506431贮罐底板、壁板、顶板制造、组装与焊接(1) 底板制造为补偿焊接收缩,罐底的排版直径比设计直径达5-2mm; 罐底边缘板对接应采用机械加工自动或半自动加工 罐底板上任意两个相邻焊接接头之间的距离,以及边缘板对接接头距离底圈壁板纵焊缝的距离,不大于200

28、mm(2) 组装 组装底板铺设前,先在基础上,画出十字中线,安排板圈铺设,中间板条,然后再向两侧铺设,中幅板和边缘板。 罐底的焊接,焊前应注意焊口的清渣与干燥,在钢板搭接处不允许夹有泥沙,油污等。采用卷制法底中心板,则明显的提高了中心板的制造质量和生产效率,卷板间采用对接接头,以改善罐底中心板的安装条件,中心板焊接顺序的方向是由中心板中心顺序向四周进行。卷制中心板在工厂加工双房发生装采用简易楔形夹紧器来固定,并垫有垫板,来保证焊接质量。 边缘板与罐壁的焊接,顺序是先焊边缘板上的对接焊缝,再焊接边缘板与罐壁最下一圈板之间的环形角焊缝,最后焊边缘板的搭接焊缝。 收缩焊缝的焊接时中幅板与边缘板之间的

29、对接焊缝,它的焊接必须是除了配工件处整个贮罐的最后一道工序(3) 底板的焊接采用手工电弧焊,焊条J507或J506电压18V电流100A。壁板的制造与安装对于最大,厚度不超过18mm的各种容器的液体或气体贮罐,先进国家已采用工厂中卷制壁板在工地安装的形式,由于设计中壁厚小于等于18,也采用工厂卷制,工地安装。(1) 首先对罐壁钢板的四边及坡口采用,机械加工或半自动火焰切割加工,对切口要求光洁平整,消除边缘的毛刺,氧化铁等。(2) 工厂中卷制板块。(3) 卷纸板的工地安装,卷纸板运往工地后,又用机动车辆将其展开,由于卷纸板极其长,已达到立罐的高,只有罐壁的立焊合罐壁与底板边缘板的环形角焊缝在工地进行。立焊采用手工电弧焊完成,底圈壁板与底边缘板之间角焊缝,应在底圈罐壁板纵焊缝后再焊,包边角钢自身连续必须采用全焊透的对接。(4) 壁对接焊时要对齐。顶盖的组装与焊接(1) 先制造顶盖在预制前先根据图和材料的尺寸确定顶板的块数,并绘制排板图每块顶板应先在胎具上拼装成形拱顶板预制后,用样板检查,间隙不应小于6mm。(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论