函数的奇偶性 (4)_第1页
函数的奇偶性 (4)_第2页
函数的奇偶性 (4)_第3页
函数的奇偶性 (4)_第4页
函数的奇偶性 (4)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、观察下图,思考并讨论以下问题:观察下图,思考并讨论以下问题:(1) 这两个函数图象有什么共同特征吗?(2) 相应的两个函数值对应表是如何体现这些特征的?f(-3)=9=f(3) f(-2)=4=f(2) f(-1)=1=f(1)f(-3)=3=f(3) f(-2)=2=f(2) f(-1)=1=f(1)f(x)=x2f(x)=|x|1偶函数偶函数 例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.12)(, 1)(22xxfxxf 一般地,对于函数一般地,对于函数f(x)的定义域内的任意一个的定义域内的任意一个x,都有都有 ,那么,那么f(x)就叫做就叫做偶函数偶函数 )()(x

2、fxf有什么共同特征吗?你能发现两个函数图象的图象(下图),和观察函数xxfxxf1)()() 1 (1) 1()2(2)2() 3(3) 3(ffffff)1(1)1()2(21)2()3(31)3(ffffff2奇函数奇函数 一般地,对于函数一般地,对于函数f(x)的定义域内的任意一个的定义域内的任意一个x,都有都有 ,那么,那么f(x)就叫做就叫做奇奇函数函数 )()(xfxfxoy3xy 4 4、如果一个函数、如果一个函数f(x)f(x)是奇函数或偶函数,那么是奇函数或偶函数,那么我们就说函数我们就说函数f(x)f(x)具有具有奇偶性奇偶性.3 3、奇、偶函数定义的逆命题也成立,即、奇

3、、偶函数定义的逆命题也成立,即 若若 为奇函数,则为奇函数,则 有成立有成立. . 若若 为偶函数,则为偶函数,则 有成立有成立. .)()(xfxf)()(xfxf)(xf)(xf1 1、函数是奇函数或是偶函数称为函数的奇偶性,、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的函数的奇偶性是函数的整体性质整体性质;2.2.定义域关于原点对称定义域关于原点对称注意:注意: 图形特征例5、判断下列函数的奇偶性:2541)()4(1)()3()()2()()1(xxfxxxfxxfxxf (1)解:定义域为R f(-x)=(-x)4=f(x)即f(-x)=f(x)f(x)偶函数(2)解

4、:定义域为R f(-x)=(-x)5=- x5 =-f(x)即f(-x)=-f(x)f(x)奇函数(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)f(x)奇函数(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x)即f(-x)=f(x)f(x)偶函数3.用定义判断函数奇偶性的步骤:(1)、先求定义域,看是否关于原点对称;、先求定义域,看是否关于原点对称;(2)、再判断是否恒、再判断是否恒成立成立.)()()()(xfxfxfxf或4.奇偶函数图象的性质1、奇函数的图象关于原点对称奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原

5、反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数点对称,那么就称这个函数为奇函数.2、偶函数的图象关于偶函数的图象关于y轴对称轴对称. 反过来,如果一个函数的图象关于反过来,如果一个函数的图象关于y轴对称,轴对称,那么就称这个函数为偶函数那么就称这个函数为偶函数.说明说明:奇偶函数图象的性质可用于:奇偶函数图象的性质可用于: a、简化函数图象的画法、简化函数图象的画法. B、判断函数的奇偶性、判断函数的奇偶性图片性质创新提高ABDEA1B1C1D1E1CHOxy例2 已知函数 y=f(x) 是偶函数,它在y轴右边的图象如下图所示,画出函数 y=f(x) 在y轴左边的图象。练习: 已知函数 y=f(x) 是奇函数,它在y轴右边的图象如下图所示,画出函数 y=f(x) 在y轴左边的图象。OxyABCDEA1B1C1D1E1本课小结1、两个定义:对于f(x)定义域内的任意一个x, 如果都有f(x)=-f(x) f(x)为奇函数为奇函数 如果都有f(x)=f(x) f(x)为偶函数为偶函数2、两个性质: 一个函数为奇函数 它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称既奇又偶函数 非奇非偶函数判断下列函数奇偶性(1) f(x)=x3+2x (2) f(x)=5解:f(-x)=(-x)3+2(-x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论