




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高二数学直线和圆的方程综合测试题 一、 选择题:1 如果直线将圆:平分,且不通过第四象限,那么的斜率取值范围是( )A B C D2.直线的倾斜角是( ) A. B. C. D. 3. 若直线,与互相垂直,则的值为( )A B1 C0或 D1或4. 过点的直线中被圆截得的弦长最大的直线方程是( )A. B. C. D. 5.过点且方向向量为的直线方程为( )A. B. C. D. 6.圆的圆心到直线的距离是( ) A. B. C.1 D. 7.圆关于直线对称的圆的方程为:( ) A. B. C. D. 8.过点且与两坐标轴都相切的圆的方程为( ) A BC或D或9. 直线与圆相交于两点,若,
2、则的取值范围是( )ABCD10. 下列命题中,正确的是( ) A方程表示的是斜率为1,在轴上的截距为2的直线;B到轴距离为5的点的轨迹方程是;C已知三个顶点,则 高的方程是; D曲线经过原点的充要条件是.11.已知圆,则且是圆与轴相切于坐标原点的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.若直线 与曲线 只有一个公共点,则实数的取值范围是( )A. B.或C. D. 或二.填空题:13.已知直线被圆 截得的弦长为8,则的值为:_14.过点,且与圆相切的直线方程为:_;15. 若满足约束条件:,则的最大值为_.16.已知实数满足,则的取值范围是:_.
3、三.解答题:17.求与轴切于点,并且在轴上截得弦长为10的圆的方程.18.已知一个圆C和轴相切,圆心在直线上,且在直线上截得的弦长为,求圆C的方程.19.已知的顶点A是定点,边在定直线上滑动, 边上的高为3,求的外心的轨迹方程.20.求满足下列条件的曲线方程: (1) 曲线,沿向量平移所得的曲线为,求的方程; (2) 曲线沿向量平移所得的曲线为,求的方程;21.已知圆和直线相交于两点,O为原点,且,求实数的取值.22.已知圆和直线 (1)求证:不论取什么值,直线和圆总相交; (2)求取何值时,圆被直线截得的弦最短,并求最短弦的长.高二数学直线和圆的方程综合测试题参考答案一. 选择题: ADDA
4、B ABCBD AD二. 填空题: 13. 14. 15. 39 16. 三. 解答题:17.答案:.18.解:圆心在直线上,设圆心C的坐标为 圆C与轴相切, 圆的半径为 设圆心到的距离为,则又圆C被直线上截得的弦长为,由圆的几何性质得:,解得圆心为或,圆C的方程为:oxy19.解:因为A为定点, 为定直线,所以以为轴,过A且垂直于的直线为轴,建立直角坐标系(如图),则,设,过作轴,垂足为,则且N平分,又因为, 是的外心,化简得, 的轨迹方程为: 20解:(1)设点为曲线上的任意一点,点是平移前在曲线上与之对应的点,则有, 又点在曲线上,从而,化简得, 为所求.(2) 设点为曲线上的任意一点,点是平移前在曲线上与之对应的点,则有, 又点在曲线上,从而,化简得, 为所求.21. 解: 设点的坐标分别为. 一方面,由,得,即 从而, 另一方面, 是方程组,的实数解, 即是方程 的两个实数根, , 又在直线, 将式代入,得 又将,式代入,解得,代入方程,检验成立。 22.解:(1)证明:由直线的方程可得,则直线恒通过点,把代入圆C的方程,得,所以点 在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国铜版纸行业十三五规划及发展潜力分析报告
- 2025-2030年中国路由器市场十三五规划及发展策略分析报告
- 2025-2030年中国药用碘行业十三五规划与发展前景分析报告
- 2025-2030年中国背投式投影电视机项目投资风险分析报告
- 2025-2030年中国翻译行业运行动态及投资发展前景预测报告
- 2025-2030年中国缆索起重机市场运行态势及发展趋势分析报告
- 2025-2030年中国硫铁矿烧渣行业运行动态规划研究报告
- 2025-2030年中国盐酸美金刚行业竞争格局及发展规划分析报告
- 2025-2030年中国白纸板市场发展趋势与投资战略研究报告
- 2025安徽省建筑安全员A证考试题库附答案
- 出租共享菜园合同范例
- 八年级班主任学生心理健康计划
- 整体施工劳务服务方案
- 【历史】唐朝建立与“贞观之治”课件-2024~2025学年统编版七年级历史下册
- 2024化工园区危险品运输车辆停车场建设规范
- 第1课 精美绝伦的传统工艺 课件 2023-2024学年赣美版初中美术八年级下册
- 云南省地质灾害群测群防手册
- 汽车吊车吊装施工方案
- 《植物保护学通论》PPT课件.ppt
- 仓内运营方案
- 江苏省电力条例(2020)
评论
0/150
提交评论