二次根式的加减(1)_第1页
二次根式的加减(1)_第2页
二次根式的加减(1)_第3页
二次根式的加减(1)_第4页
二次根式的加减(1)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级八年级 下册下册16.3二次根式的加减(二次根式的加减(1) 本课在学习二次根式乘除运算及化简的基础上,从本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,研究二次根式的加减运算算术平方根的运算出发,研究二次根式的加减运算二次根式的运算方法与数的运算方法本质上是一致二次根式的运算方法与数的运算方法本质上是一致的实数的运算律对二次根式的运算仍然适用的实数的运算律对二次根式的运算仍然适用课件说课件说明明课件说课件说明明 学习目标:学习目标:1探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2会进行二次根式的加减运算会进行二次根式的加减运算 学习重点:学习重

2、点:在化简二次根式的基础上,应用分配律进行二次根在化简二次根式的基础上,应用分配律进行二次根 式的加减运算式的加减运算 问题问题1现有一块长现有一块长7. .5 dm、宽、宽5 dm的木板,能否的木板,能否采用如图所示的方式,在这块木板上截出两个面积分采用如图所示的方式,在这块木板上截出两个面积分 别是别是8 dm2和和18 dm2的正方形木板?的正方形木板?创设情境提出问题创设情境提出问题 能截出两块正方形木能截出两块正方形木板的条件是什么?能用数板的条件是什么?能用数学式子表示吗学式子表示吗?5 dm 7. .5 dm 188818+ +创设情境提出问题创设情境提出问题 818+ + 能否

3、进一步计算?这是一种什么运算?能否进一步计算?这是一种什么运算?能进一步计算,这能进一步计算,这 种计算是两个二次根式种计算是两个二次根式的加法运算的加法运算 5 dm 7. .5 dm 188818+ +合作探究形成知识合作探究形成知识 818+ +问题问题2怎样计算怎样计算 ?如果看不出如果看不出 能否化简,我们不妨把问题简能否化简,我们不妨把问题简化,先看算式化,先看算式 能否化简能否化简818+ +3 22- -3 223 122 2-=-=-=-=()这里的两个二次根式有什么特征?这里的两个二次根式有什么特征?被开方数相同,被开方数相同,即为同类二次根式即为同类二次根式用分配用分配律

4、合并律合并 整式整式加减加减 合作探究形成知识合作探究形成知识 818+ +问题问题2怎样计算怎样计算 ?如果看不出如果看不出 能否化简,我们不妨把问题简能否化简,我们不妨把问题简化,先看算式化,先看算式 能否化简能否化简818+ +3 22- -用分配用分配律合并律合并 整式整式加减加减 你能得到这样的两个二次根式加减的方法吗你能得到这样的两个二次根式加减的方法吗? 将同类二次根将同类二次根式式用分配用分配律律合并合并3 223 122 2-=-=-=-=()合作探究形成知识合作探究形成知识 算式算式 与算式与算式 有什么相同点与不同有什么相同点与不同点?点? 818+ +3 22- -81

5、8 2 2 3 22 32 5 2+=+=+=+=+=+=()请化简算式请化简算式 ,并说出每一步化简的理由,并说出每一步化简的理由. . 818+ +化为最简化为最简二次根式二次根式 用分配用分配律合并律合并 整式整式加减加减 合作探究形成知识合作探究形成知识 能否把这种计算方法推广到一般?能否把这种计算方法推广到一般?请计算请计算 ,并说出计算依据,并说出计算依据925- -aa现在能解决本课开始时提出的问题了吗现在能解决本课开始时提出的问题了吗? 818 2 2 3 22 32 5 2+=+=+=+=+=+=()合作探究形成知识合作探究形成知识 化为最简化为最简二次根式二次根式 用分配用

6、分配律合并律合并 整式整式加减加减 二次根二次根式性质式性质 分配律分配律 整式加整式加 减法则减法则合作探究形成知识合作探究形成知识 步骤:步骤:“一化简、二判断、三合并一化简、二判断、三合并”;依据:依据:二次根式的性质、分配律和整式加减法则二次根式的性质、分配律和整式加减法则;基本思想:基本思想:把二次根式加减问题转化为整式加减问题把二次根式加减问题转化为整式加减问题 请总结二次根式加减的步骤、依据和基本思想请总结二次根式加减的步骤、依据和基本思想初步应用巩固知识初步应用巩固知识 练习练习1判断下列计算是否正确?为什么判断下列计算是否正确?为什么? 838 3-=-=- ;(1) 916

7、916= = ;(3) 494 9+=+=+ ;(2) 753 4 3-=-= (4) 初步应用巩固知识初步应用巩固知识 例例1计算:计算: 4199+ +aa ;(1) 8045- - (2) 初步应用巩固知识初步应用巩固知识 例例2计算(并说出运算步骤和每一步的算理):计算(并说出运算步骤和每一步的算理): 12 12 63 483-+-+ ;(1) 122035+-+-()() (2) 答案:(答案:(1) ;(2) ;(3) ; (4) 3 510 2 3 3- -13 624- -6 2 3 3- -初步应用巩固知识初步应用巩固知识 练习练习2计算:计算: 80205-+-+ ;(1) 1240 568+.-+.-()() ;(3) 189827+-+-() ;(2) 1132 310 0 084832-+.-+.- (4) 综合应用深化提高综合应用深化提高 练习练习3化简:化简: 23549+xxxx223= + += + +x xx xxx解:解:原式原式2223=+=+xxxx() 课堂小结课堂小结 (1)二次根式的加减运算分哪几步进行?每一个步骤)二次根式的加减运算分哪几步进行?每一个步骤 的依据是什么?的依据是什么?(2)在二次根式的加减中,主要的想法是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论