一次函数的图像和性质教学设计_第1页
一次函数的图像和性质教学设计_第2页
一次函数的图像和性质教学设计_第3页
一次函数的图像和性质教学设计_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、19.2.2一次函数的图像和性质(2)教学设计 柴沟堡第二中学 宋旭飞一、教学目标1能从图象角度理解正比例函数与一次函数的关系;2.掌握一次函数图象及其画法,理解一次函数的性质; 3体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用.二、教学重点掌握一次函数的图象和性质,一次函数与正比例函数的关系.三、教学难点理解一次函数的图象和性质,并能灵活应用四、教学方法教师启发与学生自主探究相结合五、教学手段利用多媒体等教学手段六、过程设计问题与情境师生行为设计意图活动1:提问复习 1、什么叫正比例函数、什么叫一次函数?2.它们之间有什么关系?3、正比例函数的图象是什么形状?4、正比例函数 y=

2、kx(k是常数,k0)中,k的正负对函数图象有什么影响?新课引入:既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗? 它们图象之间有什么关系?一次函数又有什么性质呢?教师提出问题,由学生口答之后,通过生生互评、师生共评,纠正出现的问题 在本次活动中,教师应重点关注:(1)学生在活动中的参与意识及回答问题的勇气;(2)学生是否掌握了正比例函数的图象和性质以及一次函数的概念从提问复习入手,承接上一节课的内容,同时引出本节课的内容,既起到复习巩固的作用,又激发学生的学习兴趣,同时为本节课的学习奠定了基础.活动2:尝试发现,合作探究一:例.用描点法在同一直角坐

3、标系中画出函数y =-6x与 y =-6x +5的图象比较上面两个函数的图象的相同点与不同点及联系.相同点:1.这两个函数的图象形状都是 , 并且倾斜程度 不同点:2.函数y=6x的图象经过原点,函数y=-6x+5的图象与y轴交于点_.联系:3.函数y=-6x+5可以看作由直线y=-6x向 平移 个单位长度而得到.函数y=-6x可以看作由直线y=-6x+5向 平移_ 个单位长度而得到.4.用同样的方法在同一坐标系内作出下列函数y=x, y=x+2,y=x-2的图象.并比较几个函数的图象的相同点与不同点及联系.教师引导得到结论.练习:1.直线y=5x-7与直线y=kx+2平行,则k=_.2.直线

4、y=3x向上平移3个单位长度得到的直线解析式为_;直线y=3x+2向下平移4个单位长度得到的直线解析式为_学生列表,描点,画图,然后由图象猜想函数y =-6x +5的图象为直线 学生通过观察、比较得到函数y =-6x与 y =-6x +5的图象之间的相同点与不同点及联系.教师利用多媒体演示y=x, y=x+2,y=x-2的图象师生一起总结得到:(1)一次函数的图象是一条直线;(2)由直线平移个单位长度得到直线(当时,向上平移;当时,向下平移)(3)直线 y=kx+b与y轴的交点坐标为(0,b)(4)直线 y=kx+b与直线y=kx是平行直线.在本次活动中教师应重点关注:(1)学生在描点画图的过

5、程中,是否注意两个函数图象的关系;(2)学生能否通过函数解析式(数)对“平移”(形)作出解释;通过参与数学活动,初步感知一次函数的图象,并积累数学活动经验(1)学生在动手作图的过程中从“形”的角度感知一次函数的图象的形状让学生在描点的过程中感受正比例函数与一次函数图象之间的位置关系(2)引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象(3)将以前学过的平移与现在讨论的函数图象联系起来,增强学生对函数与函数的认识,

6、让学生体会数形结合思想的应用通过两个练习,使学生进一步掌握一次函数 y=kx+b与正比例函数y=kx之间的联系活动3:尝试发现,合作探究二:用两点法在同一坐标系中画出函数y=2x1与y=0.5x+1的图象引导学生认识到还能利用平移方法画出函数y=2x-1与 y=-0.5x+1 的图象.观察函数y=x+2,y=2x-2及y=-x-1 y=-2x+l的图象。并思考:一次函数解析式y=kx+b(k, b是常数,k0)中,k、b的正负对函数图象有什么影响?当k>0时,直线从左向右_,即y随x的增大而_.当k<0时,直线从左向右下降,即y随x的增大而_.当b>0时,直线交y轴的_半轴当

7、b<0时,直线交y轴的_半轴当b = 0时,直线交于_结合图象,教师进一步引导同学得到一次函数图象与性质:(包括k,b的符号、经过的象限、增减性几方面进行总结)-5活动4:反馈练习,夯实基础1、画出下列函数的大致图象,并说出它们经过哪些象限?y=3x2 y=3x22、已知,函数y=3x-2的图象经过点A(-1,y1),点B(-2,y2),则y1 y2(填“”“”或“=”).3.直线y=2x - 6与y轴的交点为(_),与x轴交于(_),图象与坐标轴所围成的三角形面积是 _教师引导学生用两点法在同一坐标系中画出函数y=2x1与y=0.5x+1的图象利用多媒体展示函数y=x+2,y=2x-2

8、及y=-x-1 y=-2x+l的图象观察的正负对函数图象变化趋势的影响,b的正负与y轴交点的情况得到一次函数的性质:当时,直线从左向右上升,随的增大而增大;当时,直线从左向右下降,随的增大而减小当b>0时,直线交y轴的正半轴当b<0时,直线交y轴的负半轴当b = 0时,直线交于坐标原点即:K决定直线的变化趋势,b决定直线与y轴交点的位置 在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生从“数”“形”两方面去理解和掌握一次函数的性质学生独立完成,教师巡视,了解学生对知识的掌握情况师生共评,及时纠正学生的错误在本次活动中教师应重点关注:(1)学生在练

9、习中反映出的问题,有针对性地讲解;(2)学生对数形结合思想和分类讨论思想的掌握与运用(1)通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的随的变化而变化的情况以及,b的正负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力(2)通过类比正比例函数的性质,加深对一次函数的随的变化而变化的情况的理解 通过一系列的练习,可以实现知识向能力的转化学生在尝试运用一次函数的图象和性质解决问题的过程中,进一步加深了对一次函数的图象和性质的理解同时训练学生运用数形结合思想解决问题的意识和能力活动5:小结评价,畅谈收获通过这节课的学习,你有什么收获?教师引导学生归纳总结本节课所学的知识在本次活动中教师应重点关注:(1)学生对本节课的知识结构是否清晰;(2)学生是否通过数学活动体会到数形结合思想和分类讨论思想的运用;通过小结使学生从总体上把握知识,强化对知识的理解和记忆,还可以培养学生的数学语言表达能力引导学生积极地参与总结,提高独立分析和自主小结的能力,使学生在对一次函数的图象和性质有一个全面认识的基础上,提高对数学思想方法的认识和运用活动6:布置作业,学以致用能力提升:一已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值:1.函数值y 随x的增大而增大;2.函数图象与y轴的负半轴相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论